Silicate in the context of Ester


Silicate in the context of Ester

Silicate Study page number 1 of 3

Play TriviaQuestions Online!

or

Skip to study material about Silicate in the context of "Ester"


⭐ Core Definition: Silicate

A silicate is any member of a family of polyatomic anions consisting of silicon and oxygen, usually with the general formula [SiO
4−x
]
n
, where 0 ≤ x < 2. The family includes orthosilicate SiO4−4 (x = 0), metasilicate SiO2−3 (x = 1), and pyrosilicate Si2O6−7 (x = 0.5, n = 2). The name is also used for any salt of such anions, such as sodium metasilicate; or any ester containing the corresponding chemical group, such as tetramethyl orthosilicate. The name "silicate" is sometimes extended to any anions containing silicon, even if they do not fit the general formula or contain other atoms besides oxygen; such as hexafluorosilicate [SiF6]. Most commonly, silicates are encountered as silicate minerals.

For diverse manufacturing, technological, and artistic needs, silicates are versatile materials, both natural (such as granite, gravel, and garnet) and artificial (such as Portland cement, ceramics, glass, and waterglass).

↓ Menu
HINT:

In this Dossier

Silicate in the context of Oxygen

Oxygen is a chemical element; it has the symbol O and its atomic number is 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and a potent oxidizing agent that readily forms oxides with most elements as well as with other compounds. Oxygen is the most abundant element in Earth's crust, making up almost half of the Earth's crust in the form of various oxides such as water, carbon dioxide, iron oxides and silicates. It is also the third-most abundant element in the universe after hydrogen and helium.

At standard temperature and pressure, two oxygen atoms will bind covalently to form dioxygen, a colorless and odorless diatomic gas with the chemical formula O
2
. Dioxygen gas currently constitutes approximately 20.95% molar fraction of the Earth's atmosphere, though this has changed considerably over long periods of time in Earth's history. A much rarer triatomic allotrope of oxygen, ozone (O
3
), strongly absorbs the UVB and UVC wavelengths and forms a protective ozone layer at the lower stratosphere, which shields the biosphere from ionizing ultraviolet radiation. However, ozone present at the surface is a corrosive byproduct of smog and thus an air pollutant.

View the full Wikipedia page for Oxygen
↑ Return to Menu

Silicate in the context of Terrestrial planets

A terrestrial planet is a class of planet that is composed primarily of silicate, rocks, or metals. It may instead be known as a tellurian planet, telluric planet, or rocky planet. Within the Solar System, the terrestrial planets accepted by the International Astronomical Union are the inner planets closest to the Sun: Mercury, Venus, Earth and Mars. Among astronomers who use the geophysical definition of a planet, two or three planetary-mass satellites – Earth's Moon, Io, and sometimes Europa – may also be considered terrestrial planets. The large rocky asteroids Pallas and Vesta are sometimes included as well, albeit rarely. The terms "terrestrial planet" and "telluric planet" are derived from Latin words for Earth (Terra and Tellus), as these planets are, in terms of structure, Earth-like. Terrestrial planets are generally studied by geologists, astronomers, and geophysicists.

Terrestrial planets have a solid planetary surface, making them substantially different from larger gaseous planets, which are composed mostly of some combination of hydrogen, helium, and water existing in various physical states.

View the full Wikipedia page for Terrestrial planets
↑ Return to Menu

Silicate in the context of Kaolinite

Kaolinite (/ˈk.ələˌnt, -lɪ-/ KAY-ə-lə-nyte, -⁠lih-; also called kaolin) is a clay mineral, with the chemical composition Al2Si2O5(OH)4. It is a layered silicate mineral, with one "tetrahedral" sheet of silicate tetrahedra (SiO4) linked to one "octahedral" sheet of aluminate octahedrons (AlO2(OH)4) through oxygen atoms on one side, and another such sheet through hydrogen bonds on the other side.

Kaolinite is a soft, earthy, usually white, mineral (dioctahedral phyllosilicate clay), produced by the chemical weathering of aluminium silicate minerals like feldspar. It has a low shrink–swell capacity and a low cation-exchange capacity (1–15 meq/100 g).

View the full Wikipedia page for Kaolinite
↑ Return to Menu

Silicate in the context of Silicon

Silicon (/ˈsɪlɪkən/) is a chemical element; it has symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic lustre, and is a tetravalent non-metal (sometimes considered as a metalloid) and semiconductor. It is a member of group 14 in the periodic table: carbon is above it; and germanium, tin, lead, and flerovium are below it. It is relatively unreactive. Silicon is a significant element that is essential for several physiological and metabolic processes in plants. Silicon is widely regarded as the predominant semiconductor material due to its versatile applications in various electrical devices such as transistors, solar cells, integrated circuits, and others. These may be due to its significant band gap, expansive optical transmission range, extensive absorption spectrum, surface roughening, and effective anti-reflection coating.

Because of its high chemical affinity for oxygen, it was not until 1823 that Jöns Jakob Berzelius was first able to prepare it and characterize it in pure form. Its oxides form a family of anions known as silicates. Its melting and boiling points of 1414 °C and 3265 °C, respectively, are the second highest among all the metalloids and nonmetals, being surpassed only by boron.

View the full Wikipedia page for Silicon
↑ Return to Menu

Silicate in the context of Porphyry (geology)

Porphyry (/ˈpɔːrfəri/ POR-fə-ree) is any of various granites or igneous rocks with coarse-grained crystals such as feldspar or quartz dispersed in a fine-grained silicate-rich, generally aphanitic matrix or groundmass. In its non-geologic, traditional use, the term porphyry usually refers to the purple-red form of this stone, valued for its appearance, but other colours of decorative porphyry are also used such as "green", "black" and "grey".

The term porphyry is from the Ancient Greek πορφύρα (porphyra), meaning "purple". Purple was the colour of royalty, and the Roman "imperial porphyry" was a deep purple igneous rock with large crystals of plagioclase. Some authors claimed the rock was the hardest known in antiquity. Thus porphyry was prized for monuments and building projects in Imperial Rome and thereafter.

View the full Wikipedia page for Porphyry (geology)
↑ Return to Menu

Silicate in the context of Zircon

Zircon (/ˈzɜːrkɒn, -kən/) is a mineral belonging to the group of nesosilicates and is a source of the metal zirconium. Its chemical name is zirconium(IV) silicate, and its corresponding chemical formula is ZrSiO4. An empirical formula showing some of the range of substitution in zircon is (Zr1–y, REEy)(SiO4)1–x(OH)4x–y. Zircon precipitates from silicate melts and has relatively high concentrations of high field strength incompatible elements. For example, hafnium is almost always present in quantities ranging from 1 to 4%. The crystal structure of zircon is tetragonal crystal system. The natural color of zircon varies between colorless, yellow-golden, red, brown, blue, and green.

The name derives from the Persian zargun, meaning "gold-hued". This word is changed into "jargoon", a term applied to light-colored zircons. The English word "zircon" is derived from Zirkon, which is the German adaptation of this word. Yellow, orange, and red zircon is also known as "hyacinth", from the flower hyacinthus, whose name is of Ancient Greek origin.

View the full Wikipedia page for Zircon
↑ Return to Menu

Silicate in the context of Europa (moon)

Europa (/jʊˈrpə/ ) is the smallest and least massive of the four Galilean moons of Jupiter. It is observable from Earth with common binoculars and is a planetary-mass moon, slightly smaller and less massive than Earth's Moon. Europa is an icy moon, and, of the three icy Galilean moons, the closest orbiting Jupiter. As a result, it exhibits a relatively young surface, driven by tidal heating.

Probably having an iron–nickel core, it consists mainly of silicate rock, with a water-ice shell. It has a very thin atmosphere, composed primarily of oxygen. Its geologically young white-beige surface is striated by light tan cracks and streaks, with very few impact craters. In addition to Earth-bound telescope observations, Europa has been examined by a succession of space-probe flybys, the first occurring in the early 1970s. In September 2022, the Juno spacecraft flew within about 320 km (200 miles) of Europa for a more recent close-up view.

View the full Wikipedia page for Europa (moon)
↑ Return to Menu

Silicate in the context of Core–mantle boundary

The core–mantle boundary (CMB) of Earth lies between the planet's silicate mantle and its liquid iron–nickel outer core, at a depth of 2,891 km (1,796 mi) below Earth's surface. The boundary is observed via the discontinuity in seismic wave velocities at that depth due to the differences between the acoustic impedances of the solid mantle and the molten outer core. P-wave velocities are much slower in the outer core than in the deep mantle while S-waves do not exist at all in the liquid portion of the core. Recent evidence suggests a distinct boundary layer directly above the CMB possibly made of a novel phase of the basic perovskite mineralogy of the deep mantle named post-perovskite. Seismic tomography studies have shown significant irregularities within the boundary zone and appear to be dominated by the African and Pacific large low-shear-velocity provinces (LLSVP).

The uppermost section of the outer core is thought to be about 500–1,800 K hotter than the overlying mantle, creating a thermal boundary layer. The boundary is thought to harbor topography, much like Earth's surface, that is supported by solid-state convection within the overlying mantle. Variations in the thermal properties of the CMB may affect how the outer core's iron-rich fluids flow, which are ultimately responsible for Earth's magnetic field.

View the full Wikipedia page for Core–mantle boundary
↑ Return to Menu

Silicate in the context of Io (moon)

Io (/ˈ./) is the innermost and second-smallest of the four Galilean moons of Jupiter. Slightly larger than Earth's Moon, Io is the fourth-largest natural satellite in the Solar System, has the highest density and strongest surface gravity of any natural satellite, and the lowest amount of water by atomic ratio of any known astronomical object in the Solar System.

With over 400 active volcanoes, Io is the most geologically active object in the Solar System. This extreme geologic activity results from tidal heating from friction generated within Io's interior as it is pulled between Jupiter and two other Galilean moons—Europa and Ganymede. Several volcanoes produce plumes of sulfur and sulfur dioxide as high as 500 km (300 mi) above the surface. Io's surface is also dotted with more than 100 mountains uplifted by extensive compression at the base of Io's silicate crust. Some of these peaks are taller than Mount Everest, the highest point on Earth's surface. Unlike most moons in the outer Solar System, which are mostly composed of water ice, Io is primarily composed of silicate rock surrounding a molten iron or iron sulfide core. Most of Io's surface is composed of extensive plains with a frosty coating of sulfur and sulfur dioxide.

View the full Wikipedia page for Io (moon)
↑ Return to Menu

Silicate in the context of Silicate mineral

Silicate minerals are rock-forming minerals made up of silicate groups. They are the largest and most important class of minerals and make up approximately 90 percent of Earth's crust.

In mineralogy, the crystalline forms of silica (SiO2) are usually considered to be tectosilicates, and they are classified as such in the Dana system (75.1). However, the Nickel-Strunz system classifies them as oxide minerals (4.DA). Silica is found in nature as the mineral quartz and its polymorphs.

View the full Wikipedia page for Silicate mineral
↑ Return to Menu

Silicate in the context of Manganese nodule

Polymetallic nodules, also called manganese nodules, are mineral concretions on the sea bottom formed of concentric layers of iron and manganese hydroxides around a core. As nodules can be found in vast quantities, and contain valuable metals, deposits have been identified as a potential economic interest. Depending on their composition and authorial choice, they may also be called ferromanganese nodules. Ferromanganese nodules are mineral concretions composed of silicates and insoluble iron and manganese oxides that form on the ocean seafloor and terrestrial soils. The formation mechanism involves a series of redox oscillations driven by both abiotic and biotic processes. As a byproduct of pedogenesis, the specific composition of a ferromanganese nodule depends on the composition of the surrounding soil. The formation mechanisms and composition of the nodules allow for couplings with biogeochemical cycles beyond iron and manganese. The high relative abundance of nickel, copper, manganese, and other rare metals in nodules has increased interest in their use as a mining resource.

Nodules vary in size from tiny particles visible only under a microscope to large pellets more than 20 centimetres (8 in) across. However, most nodules are between 3 and 10 cm (1 and 4 in) in diameter, about the size of hen's eggs. Their surface textures vary from smooth to rough. They frequently have botryoidal (mammillated or knobby) texture and vary from spherical in shape to typically oblate, sometimes prolate, or are otherwise irregular. The bottom surface, buried in sediment, is generally rougher than the top due to a different type of growth.

View the full Wikipedia page for Manganese nodule
↑ Return to Menu

Silicate in the context of Ganymede (moon)

Ganymede is a natural satellite of Jupiter and is the largest and most massive moon in the Solar System. Like Saturn's largest moon Titan, it is larger than the planet Mercury, but has somewhat less surface gravity than Mercury, Io, or the Moon due to its lower density compared to the three. Ganymede orbits Jupiter in roughly seven days and is in a 1:2:4 orbital resonance with the moons Europa and Io, respectively.

Ganymede is composed of silicate rock and water in approximately equal proportions. It is a fully differentiated body with an iron-rich, liquid metallic core, giving it the lowest moment of inertia factor of any solid body in the Solar System. Its internal ocean potentially contains more water than all of Earth's oceans combined.

View the full Wikipedia page for Ganymede (moon)
↑ Return to Menu

Silicate in the context of Geological history of oxygen

Although oxygen is the most abundant element in Earth's crust, due to its high reactivity it mostly exists in compound (oxide) forms such as water, carbon dioxide, iron oxides and silicates. Before photosynthesis evolved, Earth's atmosphere had little free diatomic elemental oxygen (O2). Small quantities of oxygen were released by geological and biological processes, but did not build up in the reducing atmosphere due to reactions with then-abundant reducing gases such as atmospheric methane and hydrogen sulfide and surface reductants such as ferrous iron.

Oxygen began building up in the prebiotic atmosphere at approximately 2.45 Ga during the Neoarchean-Paleoproterozoic boundary, a paleogeological event known as the Great Oxygenation Event (GOE). The concentrations of O2 attained were less than 10% of today's and probably fluctuated greatly. Around 500Mya a second event known as the Neoproterozoic Oxygenation Event lead to oxygen levels similar or even higher than the present. The increase in oxygen concentrations had wide-ranging and significant impacts on Earth's geochemistry and biosphere. Detailed connections between oxygen and evolution remain elusive.

View the full Wikipedia page for Geological history of oxygen
↑ Return to Menu

Silicate in the context of Mica

Micas (/ˈmkəz/ MY-kəz) are a group of silicate minerals whose outstanding physical characteristic is that individual mica crystals can easily be split into fragile elastic plates. This characteristic is described as perfect basal cleavage. Mica is common in igneous and metamorphic rock and is occasionally found as small flakes in sedimentary rock. It is particularly prominent in many granites, pegmatites, and schists, and "books" (large individual crystals) of mica several feet across have been found in some pegmatites.

Micas are used in products such as drywalls, paints, and fillers, especially in parts for automobiles, roofing, and in electronics. The mineral is used in cosmetics and food to add "shimmer" or "frost".

View the full Wikipedia page for Mica
↑ Return to Menu

Silicate in the context of Anorthite

Anorthite (< an 'not' + ortho 'straight') is the calcium endmember of the plagioclase feldspar mineral series. The chemical formula of pure anorthite is CaAl2Si2O8. Anorthite is found in igneous rocks.

View the full Wikipedia page for Anorthite
↑ Return to Menu

Silicate in the context of Natrolite

Natrolite is a tectosilicate mineral species belonging to the zeolite group. It is a hydrated sodium and aluminium silicate with the formula Na2Al2Si3O10·2H2O. The type locality is Hohentwiel, Hegau, Germany.

It was named natrolite by Martin Heinrich Klaproth in 1803. The name is derived from natron (νατρών), the Greek word for soda, in reference to the sodium content, and lithos (λίθος), meaning stone. Needle stone or needle-zeolite are other informal names, alluding to the common acicular habit of the crystals, which are often very slender and are aggregated in divergent tufts. The crystals are frequently epitaxial overgrowths of natrolite, mesolite, and gonnardite in various orders.

View the full Wikipedia page for Natrolite
↑ Return to Menu

Silicate in the context of Biomineralization

Biomineralization, also written biomineralisation, is the process by which living organisms produce minerals, often resulting in hardened or stiffened mineralized tissues. It is an extremely widespread phenomenon: all six taxonomic kingdoms contain members that can form minerals, and over 60 different minerals have been identified in organisms. Examples include silicates in algae and diatoms, carbonates in invertebrates, and calcium phosphates and carbonates in vertebrates. These minerals often form structural features such as sea shells and the bone in mammals and birds.

Organisms have been producing mineralized skeletons for the past 550 million years. Calcium carbonates and calcium phosphates are usually crystalline, but silica organisms (such as sponges and diatoms) are always non-crystalline minerals. Other examples include copper, iron, and gold deposits involving bacteria. Biologically formed minerals often have special uses such as magnetic sensors in magnetotactic bacteria (Fe3O4), gravity-sensing devices (CaCO3, CaSO4, BaSO4) and iron storage and mobilization (Fe2O3•H2O in the protein ferritin).

View the full Wikipedia page for Biomineralization
↑ Return to Menu