Detritivore in the context of "Freshwater snail"

Play Trivia Questions online!

or

Skip to study material about Detritivore in the context of "Freshwater snail"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Detritivore in the context of Freshwater snail

Freshwater snails are gastropod mollusks that live in fresh water. There are many different families. They are found throughout the world in various habitats, ranging from ephemeral pools to the largest lakes, and from small seeps and springs to major rivers. The great majority of freshwater gastropods have a shell, with very few exceptions. Some groups of snails that live in freshwater respire using gills, whereas other groups need to reach the surface to breathe air. In addition, some are amphibious and have both gills and a lung (e.g. Ampullariidae). Most feed on algae, but many are detritivores and some are filter feeders.

Freshwater snails are indirectly among the deadliest animals to humans, as they carry parasitic worms that cause schistosomiasis, a disease estimated to kill between 10,000 and 200,000 people annually.

↓ Explore More Topics
In this Dossier

Detritivore in the context of Micro-animal

Microfauna (from Ancient Greek mikros 'small' and Latin fauna 'animal') are microscopic animals and organisms that exhibit animal-like qualities and have body sizes that are usually <0.1 mm. Microfauna are represented in the animal kingdom (e.g. nematodes, small arthropods) and some other heterotrophic, microscopic eukaryotes. A large amount of microfauna are soil microfauna which includes eukaryotic microbes, rotifers, and nematodes. These types of animal-like eukaryotic microbes and true animals are heterotrophic, largely feeding on bacteria. However, some microfauna can consume other things, making them detritivores, fungivores, or even predators.

↑ Return to Menu

Detritivore in the context of Decomposition

Decomposition is the process by which dead organic substances are broken down into simpler organic or inorganic matter such as carbon dioxide, water, simple sugars and mineral salts. The process is a part of the nutrient cycle and is essential for recycling the finite matter that occupies physical space in the biosphere. Bodies of living organisms begin to decompose shortly after death. Although no two organisms decompose in the same way, they all undergo the same sequential stages of decomposition. Decomposition can be a gradual process for organisms that have extended periods of dormancy.

One can differentiate abiotic decomposition from biotic decomposition (biodegradation); the former means "the degradation of a substance by chemical or physical processes", e.g., hydrolysis; the latter means "the metabolic breakdown of materials into simpler components by living organisms", typically by microorganisms. Animals, such as earthworms, also help decompose the organic materials on and in soil through their activities. Organisms that do this are known as decomposers or detritivores.

↑ Return to Menu

Detritivore in the context of Termite

Termites are a group of detritophagous eusocial cockroaches which consume a variety of decaying plant material, generally in the form of wood, leaf litter, and soil humus. They are distinguished by their moniliform antennae and the soft-bodied, unpigmented worker caste for which they have been commonly termed "white ants"; however, they are not ants but highly derived cockroaches. About 2,997 extant species are currently described, 2,125 of which are members of the family Termitidae.

Termites comprise the infraorder Isoptera, or alternatively the epifamily Termitoidae, within the order Blattodea (the cockroaches). Termites were once classified in a separate order from cockroaches, but recent phylogenetic studies indicate that they evolved from cockroaches, as they are deeply nested within the group, and the sister group to wood-eating cockroaches of the genus Cryptocercus. Previous estimates suggested the divergence took place during the Jurassic or Triassic. More recent estimates suggest that they have an origin during the Late Jurassic, with the first fossil records in the Early Cretaceous.

↑ Return to Menu

Detritivore in the context of Food chain

A food chain is a linear network of links in a food web, often beginning with an autotroph (such as grass or algae), also called a producer, and typically ending at an apex predator (such as grizzly bears or killer whales), detritivore (such as earthworms and woodlice), or decomposer (such as fungi or bacteria). A food web is distinct from a food chain. A food chain illustrates the associations between organisms according to the energy sources they consume in trophic levels, and the most common way to quantify them is in length: the number of links between a trophic consumer and the base of the chain.

Studies of food chains are essential to many biological studies.

↑ Return to Menu

Detritivore in the context of Herbivore

A herbivore is an animal anatomically and physiologically evolved to feed on plants, especially upon vascular tissues such as foliage, fruits or seeds, as the main component of its diet. These more broadly also encompass animals that eat non-vascular autotrophs such as mosses, algae and lichens, but do not include those feeding on decomposed plant matters (i.e. detritivores) or macrofungi (i.e. fungivores).

As a result of their plant-based diet, herbivorous animals typically have mouth structures (jaws or mouthparts) well adapted to mechanically break down plant materials, and their digestive systems have special enzymes (e.g. amylase and cellulase) to digest polysaccharides. Grazing herbivores such as horses and cattles have wide flat-crowned teeth that are better adapted for grinding grass, tree bark and other tougher lignin-containing materials, and many of them evolved rumination or cecotropic behaviors to better extract nutrients from plants. A large percentage of herbivores also have mutualistic gut flora made up of bacteria and protozoans that help to degrade the cellulose in plants, whose heavily cross-linking polymer structure makes it far more difficult to digest than the protein- and fat-rich animal tissues that carnivores eat.

↑ Return to Menu

Detritivore in the context of Hexapoda

The subphylum Hexapoda (from Greek for 'six legs') or hexapods comprises the largest clade of arthropods and includes most of the extant arthropod species. It includes the crown group class Insecta (true insects), as well as the much smaller clade Entognatha, which includes three classes of wingless arthropods that were once considered insects: Collembola (springtails), Protura (coneheads) and Diplura (two-pronged bristletails). The insects and springtails are very abundant and are some of the most important pollinators, basal consumers, scavengers/detritivores and micropredators in terrestrial environments.

Hexapods are named for their most distinctive feature: a three-part body plan with a consolidated thorax and three pairs of legs. Most other arthropods have more than three pairs of legs. Most recent studies have recovered Hexapoda as a subgroup of Pancrustacea.

↑ Return to Menu

Detritivore in the context of Compost

Compost is a mixture of ingredients used as plant fertilizer and to improve soil's physical, chemical, and biological properties. It is commonly prepared by decomposing plant and food waste, recycling organic materials, and manure. The resulting mixture is rich in plant nutrients and beneficial organisms, such as bacteria, protozoa, nematodes, and fungi. Compost improves soil fertility in gardens, landscaping, horticulture, urban agriculture, and organic farming, reducing dependency on commercial chemical fertilizers. The benefits of compost include providing nutrients to crops as fertilizer, acting as a soil conditioner, increasing the humus or humic acid contents of the soil, and introducing beneficial microbes that help to suppress pathogens in the soil and reduce soil-borne diseases.

At the simplest level, composting requires gathering a mix of green waste (nitrogen-rich materials such as leaves, grass, and food scraps) and brown waste (woody materials rich in carbon, such as stalks, paper, and wood chips). The materials break down into humus in a process taking months. Composting can be a multistep, closely monitored process with measured inputs of water, air, and carbon- and nitrogen-rich materials. The decomposition process is aided by shredding the plant matter, adding water, and ensuring proper aeration by regularly turning the mixture in a process using open piles or windrows. Fungi, earthworms, and other detritivores further break up the organic material. Aerobic bacteria and fungi manage the chemical process by converting the inputs into heat, carbon dioxide, and ammonium ions.

↑ Return to Menu