Detached object in the context of "2021 RR205"

Play Trivia Questions online!

or

Skip to study material about Detached object in the context of "2021 RR205"

Ad spacer

⭐ Core Definition: Detached object

Detached objects are a dynamical class of minor planets in the outer reaches of the Solar System and belong to the broader family of trans-Neptunian objects (TNOs). These objects have orbits whose points of closest approach to the Sun (perihelion) are sufficiently distant from the gravitational influence of Neptune that they are only moderately affected by Neptune and the other known planets: This makes them appear to be "detached" from the rest of the Solar System, except for their attraction to the Sun.

In this way, detached objects differ substantially from most other known TNOs, which form a loosely defined set of populations that have been perturbed to varying degrees onto their current orbit by gravitational encounters with the giant planets, predominantly Neptune. Detached objects have larger perihelia than these other TNO populations, including the objects in orbital resonance with Neptune, such as Pluto, the classical Kuiper belt objects in non-resonant orbits such as Makemake, and the scattered disk objects like Eris.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Detached object in the context of 2021 RR205

2021 RR205 is an extreme trans-Neptunian object discovered by astronomers Scott Sheppard, David Tholen, and Chad Trujillo with the Subaru Telescope at Mauna Kea Observatory on 5 September 2021. It resides beyond the outer extent of the Kuiper belt on a distant and highly eccentric orbit detached from Neptune's gravitational influence, with a large perihelion distance of 55.5 astronomical units (AU). Its large orbital semi-major axis (~1,000 AU) suggests it is potentially from the inner Oort cloud. 2021 RR205 and 2013 SY99 both lie in the 50–75 AU perihelion gap that separates the detached objects from the more distant sednoids; dynamical studies indicate that such objects in the inner edge of this gap weakly experience "diffusion", or inward orbital migration due to minuscule perturbations by Neptune. While Sheppard considers 2021 RR205 a sednoid, researchers Yukun Huang and Brett Gladman do not.

2021 RR205's heliocentric distance was 60 AU when it was discovered. It has been detected in precovery observations by the Dark Energy Survey at Cerro Tololo Observatory from as early as July 2017. It last passed perihelion in the early 1990s and is now moving outbound from the Sun.

↓ Explore More Topics
In this Dossier

Detached object in the context of Oort cloud

The Oort cloud (pronounced /ɔːrt/ ORT or /ʊərt/ OORT), sometimes called the Öpik–Oort cloud, is theorized to be a cloud of billions of icy planetesimals surrounding the Sun at distances ranging from 2,000 to 200,000 AU (0.03 to 3.2 light-years). The cloud was proposed in 1950 by the Dutch astronomer Jan Oort, in whose honor the idea was named. Oort proposed that the bodies in this cloud replenish and keep constant the number of long-period comets entering the inner Solar System—where they are eventually consumed and destroyed during close approaches to the Sun.

The cloud is thought to encompass two regions: a disc-shaped inner Oort cloud aligned with the solar ecliptic (also called its Hills cloud) and a spherical outer Oort cloud enclosing the entire Solar System. Both regions lie well beyond the heliosphere and are in interstellar space. The innermost portion of the Oort cloud is more than a thousand times as far from the Sun as the Kuiper belt, the scattered disc and the detached objects—three nearer reservoirs of trans-Neptunian objects.

↑ Return to Menu

Detached object in the context of Sednoid

A sednoid is a trans-Neptunian object with a large semi-major axis, a distant perihelion and a highly eccentric orbit, similar to that of the dwarf planet Sedna. The consensus among astronomers is that there are only four objects that are known from this population: Sedna, 2012 VP113, 541132 Leleākūhonua, and 2023 KQ14. All four have perihelia greater than 60 AU. The sednoids are also classified as detached objects, since their perihelion distances are large enough that Neptune's gravity does not strongly influence their orbits. Some astronomers consider the sednoids to be Inner Oort Cloud (IOC) objects. The inner Oort cloud, or Hills cloud, lies at 1,000–10,000 AU from the Sun.

One attempt at a precise definition of sednoids is any body with a perihelion greater than 50 AU and a semi-major axis greater than 150 AU.However, this definition applies to the objects 2013 SY99, 2020 MQ53, and 2021 RR205 which have perihelia beyond 50 AU and semi-major axes over 700 AU. Despite this, astronomers do not classify these objects as sednoids because their orbits still experience gradual orbital migration as a result of perturbations by galactic tides and Neptune's weak gravitational influence.

↑ Return to Menu

Detached object in the context of Trans-Neptunian object

A trans-Neptunian object (TNO), also written transneptunian object, is any minor planet in the Solar System that orbits the Sun at a greater average distance than Neptune, which has an orbital semi-major axis of 30.1 astronomical units (AU).

Typically, TNOs are further divided into the classical and resonant objects of the Kuiper belt, the scattered disc and detached objects with the sednoids being the most distant ones. As of February 2025, the catalog of minor planets contains 1006 numbered and more than 4000 unnumbered TNOs. However, nearly 5900 objects with semimajor axis over 30 AU are present in the MPC catalog, with 1009 being numbered.

↑ Return to Menu

Detached object in the context of Solar System object

The following is a list of Solar System objects by orbit, ordered by increasing distance from the Sun. Most named objects in this list have a diameter of 500 km or more.

↑ Return to Menu