Cosmic distance ladder in the context of "Standard ruler"

Play Trivia Questions online!

or

Skip to study material about Cosmic distance ladder in the context of "Standard ruler"

Ad spacer

⭐ Core Definition: Cosmic distance ladder

The cosmic distance ladder (also known as the extragalactic distance scale) is the succession of methods by which astronomers determine the distances to celestial objects. A direct distance measurement of an astronomical object is possible only for those objects that are "close enough" (within about a thousand parsecs or 3×10 km) to Earth. The techniques for determining distances to more distant objects are all based on various measured correlations between methods that work at close distances and methods that work at larger distances. Several methods rely on a standard candle, which is an astronomical object that has a known luminosity.

The ladder analogy arises because no single technique can measure distances at all ranges encountered in astronomy. Instead, one method can be used to measure nearby distances, a second can be used to measure nearby to intermediate distances, and so on. Each rung of the ladder provides information that can be used to determine the distances at the next higher rung.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Cosmic distance ladder in the context of Standard ruler

A standard ruler is an astronomical object for which the actual physical size is known. By measuring its angular size in the sky, one can use simple trigonometry to determine its distance from Earth. In simple terms, this is because objects of a fixed size appear smaller the further away they are.

Measuring distances is of great importance in cosmology, as the relationship between the distance and redshift of an object can be used to measure the expansion rate and geometry of the Universe. Distances can also be measured using standard candles; many different types of standard candles and rulers are needed to construct the cosmic distance ladder.

↓ Explore More Topics
In this Dossier

Cosmic distance ladder in the context of Edwin Hubble

Edwin Powell Hubble (November 20, 1889 – September 28, 1953) was an American astronomer. He played a crucial role in establishing the fields of extragalactic astronomy and observational cosmology.

Hubble proved that many objects previously thought to be clouds of dust and gas and classified as "nebulae" were actually galaxies beyond the Milky Way. He used the strong direct relationship between a classical Cepheid variable's luminosity and pulsation period (discovered in 1908 by Henrietta Swan Leavitt) for scaling galactic and extragalactic distances.

↑ Return to Menu

Cosmic distance ladder in the context of Cepheid variable

A Cepheid variable (/ˈsɛfi.ɪd, ˈsfi-/) is a type of variable star that pulsates radially, varying in both diameter and temperature. It changes in brightness, with a well-defined stable period (typically 1–100 days) and amplitude. Cepheids are important cosmic benchmarks for scaling galactic and extragalactic distances; a strong direct relationship exists between a Cepheid variable's luminosity and its pulsation period.

This characteristic of classical Cepheids was discovered in 1908 by Henrietta Swan Leavitt after studying thousands of variable stars in the Magellanic Clouds. The discovery establishes the true luminosity of a Cepheid by observing its pulsation period. This in turn gives the distance to the star by comparing its known luminosity to its observed brightness, calibrated by directly observing the parallax distance to the closest Cepheids such as RS Puppis and Polaris.

↑ Return to Menu

Cosmic distance ladder in the context of NGC 1427A

NGC 1427A, also known as ESO 358-49, or ESO 358- G 049, is an irregular galaxy in the constellation Fornax. Its distance modulus has been estimated using the globular cluster luminosity function to be 31.01 ± 0.21 which is about 52 Mly. It is the brightest dwarf irregular member of the Fornax Cluster and is in the foreground of the cluster's central galaxy NGC 1399.

↑ Return to Menu

Cosmic distance ladder in the context of Parallax

Parallax is a displacement or difference in the apparent position of an object viewed along two different lines of sight and is measured by the angle or half-angle of inclination between those two lines. Due to foreshortening, nearby objects show a larger parallax than farther objects, so parallax can be used to determine distances.

To measure large distances, such as the distance of a planet or a star from Earth, astronomers use the principle of parallax. Here, the term parallax is the semi-angle of inclination between two sight-lines to the star, as observed when Earth is on opposite sides of the Sun in its orbit. These distances form the lowest rung of what is called "the cosmic distance ladder", the first in a succession of methods by which astronomers determine the distances to celestial objects, serving as a basis for other distance measurements in astronomy forming the higher rungs of the ladder.

↑ Return to Menu

Cosmic distance ladder in the context of Period-luminosity relation

In astronomy, a period-luminosity relation is a relationship linking the luminosity of pulsating variable stars with their pulsation period.The best-known relation is the direct proportionality law holding for Classical Cepheid variables, sometimes called the Leavitt Law. Discovered in 1908 by Henrietta Swan Leavitt, the relation established Cepheids as foundational indicators of cosmic benchmarks for scaling galactic and extragalactic distances.The physical model explaining the Leavitt's law for classical cepheids is called kappa mechanism.

↑ Return to Menu

Cosmic distance ladder in the context of Henrietta Swan Leavitt

Henrietta Swan Leavitt (/ˈlɛvɪt/; July 4, 1868 – December 12, 1921) was an American astronomer. Her discovery of how to effectively measure vast astronomical distances led to a shift in the understanding of the scale and nature of the universe.

A graduate of Radcliffe College, she worked at the Harvard College Observatory as a human computer, tasked with measuring photographic plates to catalog the positions and brightness of stars. This work led her to discover the relation between the luminosity and the period of Cepheid variables. Leavitt's discovery provided astronomers with the first standard candle with which to measure the distance to other galaxies.

↑ Return to Menu

Cosmic distance ladder in the context of Mario Hamuy

Mario Andrés Hamuy Wackenhut (born 1960) is a Chilean Astronomer and Professor of Astronomy at the University of Chile and Cerro Calan Observatory. He is well known for his observational work on all classes of supernovae, especially the use of Type Ia and Type II supernovae as measures of cosmic distance.

↑ Return to Menu

Cosmic distance ladder in the context of Alpha Persei Cluster

The Alpha Persei Cluster, also known as Melotte 20 or Collinder 39, is an open cluster of stars in the northern constellation of Perseus. To the naked eye, the cluster consists of several blue-hued spectral type B stars. The most luminous member is the ~2nd magnitude yellow supergiant Mirfak, also known as Alpha Persei. Bright members also include Delta, Sigma, Psi, 29, 30, 34, and 48 Persei. The Hipparcos satellite and infrared color-magnitude diagram fitting have been used to establish a distance to the cluster of ~560 light-years (172 pc). The distance established via the independent analyses agree, thereby making the cluster an important rung on the cosmic distance ladder. As seen from the Earth, the extinction of the cluster due to interstellar dust is around 0.30.

The cluster is centered to the northeast of Alpha Persei. It has a core radius of 11.4 ± 1.4 ly, a half-mass radius of 18 ly, and a tidal radius of 70.6 ± 8.5 ly, with 517 members being identified within the latter. The cluster shows solid evidence of having undergone mass segregation, with the mean stellar mass decreasing toward the edge. The age of this cluster is about 50–70 million years. Cluster member stars show a near-solar metallicity, meaning the abundance of elements with atomic numbers higher than 2 are similar to those in the Sun. The cluster shows evidence of tidal tails, which are most likely of galactic origin.

↑ Return to Menu