Henrietta Swan Leavitt in the context of "Period-luminosity relation"

Play Trivia Questions online!

or

Skip to study material about Henrietta Swan Leavitt in the context of "Period-luminosity relation"

Ad spacer

⭐ Core Definition: Henrietta Swan Leavitt

Henrietta Swan Leavitt (/ˈlɛvɪt/; July 4, 1868 – December 12, 1921) was an American astronomer. Her discovery of how to effectively measure vast astronomical distances led to a shift in the understanding of the scale and nature of the universe.

A graduate of Radcliffe College, she worked at the Harvard College Observatory as a human computer, tasked with measuring photographic plates to catalog the positions and brightness of stars. This work led her to discover the relation between the luminosity and the period of Cepheid variables. Leavitt's discovery provided astronomers with the first standard candle with which to measure the distance to other galaxies.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Henrietta Swan Leavitt in the context of Period-luminosity relation

In astronomy, a period-luminosity relation is a relationship linking the luminosity of pulsating variable stars with their pulsation period.The best-known relation is the direct proportionality law holding for Classical Cepheid variables, sometimes called the Leavitt Law. Discovered in 1908 by Henrietta Swan Leavitt, the relation established Cepheids as foundational indicators of cosmic benchmarks for scaling galactic and extragalactic distances.The physical model explaining the Leavitt's law for classical cepheids is called kappa mechanism.

↓ Explore More Topics
In this Dossier

Henrietta Swan Leavitt in the context of Edwin Hubble

Edwin Powell Hubble (November 20, 1889 – September 28, 1953) was an American astronomer. He played a crucial role in establishing the fields of extragalactic astronomy and observational cosmology.

Hubble proved that many objects previously thought to be clouds of dust and gas and classified as "nebulae" were actually galaxies beyond the Milky Way. He used the strong direct relationship between a classical Cepheid variable's luminosity and pulsation period (discovered in 1908 by Henrietta Swan Leavitt) for scaling galactic and extragalactic distances.

↑ Return to Menu

Henrietta Swan Leavitt in the context of Hubble's law

Hubble's law, officially the Hubble–Lemaître law, is the observation in physical cosmology that galaxies are moving away from Earth at speeds proportional to their distance. In other words, the farther a galaxy is from the Earth, the faster it moves away. A galaxy's recessional velocity is typically determined by measuring its redshift, a shift in the frequency of light emitted by the galaxy.

The discovery of Hubble's law is attributed to work published by Edwin Hubble in 1929, but the notion of the universe expanding at a calculable rate was first derived from general relativity equations in 1922 by Alexander Friedmann. The Friedmann equations showed the universe might be expanding, and presented the expansion speed if that were the case. Before Hubble, astronomer Carl Wilhelm Wirtz had, in 1922 and 1924, deduced with his own data that galaxies that appeared smaller and dimmer had larger redshifts and thus that more distant galaxies recede faster from the observer. In 1927, Georges Lemaître concluded that the universe might be expanding by noting the proportionality of the recessional velocity of distant bodies to their respective distances. He estimated a value for this ratio, which—after Hubble confirmed cosmic expansion and determined a more precise value for it two years later—became known as the Hubble constant. Hubble inferred the recession velocity of the objects from their redshifts, many of which were earlier measured and related to velocity by Vesto Slipher in 1917. Combining Slipher's velocities with Henrietta Swan Leavitt's intergalactic distance calculations and methodology allowed Hubble to better calculate an expansion rate for the universe.

↑ Return to Menu

Henrietta Swan Leavitt in the context of Cepheid variable

A Cepheid variable (/ˈsɛfi.ɪd, ˈsfi-/) is a type of variable star that pulsates radially, varying in both diameter and temperature. It changes in brightness, with a well-defined stable period (typically 1–100 days) and amplitude. Cepheids are important cosmic benchmarks for scaling galactic and extragalactic distances; a strong direct relationship exists between a Cepheid variable's luminosity and its pulsation period.

This characteristic of classical Cepheids was discovered in 1908 by Henrietta Swan Leavitt after studying thousands of variable stars in the Magellanic Clouds. The discovery establishes the true luminosity of a Cepheid by observing its pulsation period. This in turn gives the distance to the star by comparing its known luminosity to its observed brightness, calibrated by directly observing the parallax distance to the closest Cepheids such as RS Puppis and Polaris.

↑ Return to Menu