Computing in the context of Loader (computing)


Computing in the context of Loader (computing)

Computing Study page number 1 of 15

Play TriviaQuestions Online!

or

Skip to study material about Computing in the context of "Loader (computing)"


HINT:

In this Dossier

Computing in the context of Grapheme

In linguistics, a grapheme is the smallest functional unit of a writing system. The word grapheme is derived from Ancient Greek's gráphō ('write'), and the suffix -eme (by analogy with phoneme and other emic units). The study of graphemes is called graphemics. The concept of a grapheme is abstract; it is similar to the notion of a character in computing. (A specific geometric shape that represents any particular grapheme in a given typeface is called a glyph.) In orthographic and linguistic notation, a particular glyph (character) is represented as a grapheme (is used in its graphemic sense) by enclosing it within angle brackets: e.g. ⟨a⟩.

View the full Wikipedia page for Grapheme
↑ Return to Menu

Computing in the context of Truth value

In logic and mathematics, a truth value, sometimes called a logical value, is a value indicating the relation of a proposition to truth, which in classical logic has only two possible values (true or false). Truth values are used in computing as well as various types of logic.

View the full Wikipedia page for Truth value
↑ Return to Menu

Computing in the context of First-come, first-served

Queueing theory is the mathematical study of waiting lines, or queues. A queueing model is constructed so that queue lengths and waiting time can be predicted. Queueing theory is generally considered a branch of operations research because the results are often used when making business decisions about the resources needed to provide a service.

Queueing theory has its origins in research by Agner Krarup Erlang, who created models to describe the system of incoming calls at the Copenhagen Telephone Exchange Company. These ideas were seminal to the field of teletraffic engineering and have since seen applications in telecommunications, traffic engineering, computing, project management, and particularly industrial engineering, where they are applied in the design of factories, shops, offices, and hospitals.

View the full Wikipedia page for First-come, first-served
↑ Return to Menu

Computing in the context of Speed of light

The speed of light in vacuum, often called simply speed of light and commonly denoted c, is a universal physical constant exactly equal to 299,792,458 metres per second (approximately 1 billion kilometres per hour; 700 million miles per hour). It is exact because, by international agreement, a metre is defined as the length of the path travelled by light in vacuum during a time interval of 1299792458 second. The speed of light is the same for all observers, no matter their relative velocity. It is the upper limit for the speed at which information, matter, or energy can travel through space.

All forms of electromagnetic radiation, including visible light, travel in vacuum at the speed c. For many practical purposes, light and other electromagnetic waves will appear to propagate instantaneously, but for long distances and sensitive measurements, their finite speed has noticeable effects. Much starlight viewed on Earth is from the distant past, allowing humans to study the history of the universe by viewing distant objects. When communicating with distant space probes, it can take hours for signals to travel. In computing, the speed of light fixes the ultimate minimum communication delay. The speed of light can be used in time of flight measurements to measure large distances to extremely high precision.

View the full Wikipedia page for Speed of light
↑ Return to Menu

Computing in the context of Smartphone

A smartphone is a mobile device that combines the functionality of a traditional mobile phone with advanced computing capabilities. It typically has a touchscreen interface, allowing users to access a wide range of applications and services, such as web browsing, email, and social media, as well as multimedia playback and streaming. Smartphones have built-in cameras, GPS navigation, and support for various communication methods, including voice calls, text messaging, and internet-based messaging apps. Smartphones are distinguished from older-design feature phones by their more advanced hardware capabilities and extensive mobile operating systems, access to the internet, business applications, mobile payments, and multimedia functionality, including music, video, gaming, radio, and television.

Smartphones typically feature metal–oxide–semiconductor (MOS) integrated circuit (IC) chips, various sensors, and support for multiple wireless communication protocols. Examples of smartphone sensors include accelerometers, barometers, gyroscopes, and magnetometers; they can be used by both pre-installed and third-party software to enhance functionality. Wireless communication standards supported by smartphones include Wi-Fi, Bluetooth, Hotspots and satellite navigation. By the mid-2020s, manufacturers began integrating satellite messaging and emergency services, expanding their utility in remote areas without reliable cellular coverage. Smartphones have largely replaced personal digital assistant (PDA) devices, handheld/palm-sized PCs, portable media players (PMP), point-and-shoot cameras, camcorders, and, to a lesser extent, handheld video game consoles, e-reader devices, pocket calculators, and GPS tracking units.

View the full Wikipedia page for Smartphone
↑ Return to Menu

Computing in the context of Mass media

Mass media refers to the forms of media that reach large audiences via mass communication. It includes broadcast media, digital media, print media, social media, streaming media, advertising, and events.

Mass media encompasses news, advocacy, entertainment, and public service announcements, and intersects with the study of marketing, propaganda, public relations, political communication, journalism, art, drama, computing, and technology. The influence of mass media on individuals and groups has also been analysed from the standpoint of anthropology, economics, history, law, philosophy, psychology, and sociology.

View the full Wikipedia page for Mass media
↑ Return to Menu

Computing in the context of Motion controller

In computing, a motion controller is a type of input device that uses accelerometers, gyroscopes, cameras, or other sensors to track motion.

Motion controllers see use as game controllers, for virtual reality and other simulation purposes, and as pointing devices for smart TVs and Personal computers.

View the full Wikipedia page for Motion controller
↑ Return to Menu

Computing in the context of Smartphones

A smartphone is a mobile device that combines the functionality of a traditional mobile phone with advanced computing capabilities. It typically has a touchscreen interface, allowing users to access a wide range of applications and services, such as web browsing, email, and social media, as well as multimedia playback and streaming. Smartphones have built-in cameras, GPS navigation, and support for various communication methods, including voice calls, text messaging, and internet-based messaging apps. Smartphones are distinguished from older-design feature phones by their more advanced hardware capabilities and extensive mobile operating systems, access to the internet, business applications, mobile payments, and multimedia functionality, including music, video, gaming, radio, and television.

Smartphones typically feature metal–oxide–semiconductor (MOS) integrated circuit (IC) chips, various sensors, and support for multiple wireless communication protocols. Examples of smartphone sensors include accelerometers, barometers, gyroscopes, and magnetometers; they can be used by both pre-installed and third-party software to enhance functionality. Wireless communication standards supported by smartphones include LTE, 5G NR, Wi-Fi, Bluetooth, and satellite navigation. By the mid-2020s, manufacturers began integrating satellite messaging and emergency services, expanding their utility in remote areas without reliable cellular coverage. Smartphones have largely replaced personal digital assistant (PDA) devices, handheld/palm-sized PCs, portable media players (PMP), point-and-shoot cameras, camcorders, and, to a lesser extent, handheld video game consoles, e-reader devices, pocket calculators, and GPS tracking units.

View the full Wikipedia page for Smartphones
↑ Return to Menu

Computing in the context of Information processing (psychology)

In cognitive psychology, information processing is an approach to the goal of understanding human thinking that treats cognition as essentially computational in nature, with the mind being the software and the brain being the hardware. It arose in the 1940s and 1950s, after World War II. The information processing approach in psychology is closely allied to the computational theory of mind in philosophy; it is also related to cognitivism in psychology and functionalism in philosophy.

View the full Wikipedia page for Information processing (psychology)
↑ Return to Menu

Computing in the context of Database

In computing, a database is an organized collection of data or a type of data store based on the use of a database management system (DBMS), the software that interacts with end users, applications, and the database itself to capture and analyze the data. The DBMS additionally encompasses the core facilities provided to administer the database. The sum total of the database, the DBMS and the associated applications can be referred to as a database system. Often the term "database" is also used loosely to refer to any of the DBMS, the database system or an application associated with the database.

Before digital storage and retrieval of data have become widespread, index cards were used for data storage in a wide range of applications and environments: in the home to record and store recipes, shopping lists, contact information and other organizational data; in business to record presentation notes, project research and notes, and contact information; in schools as flash cards or other visual aids; and in academic research to hold data such as bibliographical citations or notes in a card file. Professional book indexers used index cards in the creation of book indexes until they were replaced by indexing software in the 1980s and 1990s.

View the full Wikipedia page for Database
↑ Return to Menu

Computing in the context of Hexadecimal

Hexadecimal (hex for short) is a positional numeral system for representing a numeric value as base 16. For the most common convention, a digit is represented as "0" to "9" like for decimal and as a letter of the alphabet from "A" to "F" (either upper or lower case) for the digits with decimal value 10 to 15.

As typical computer hardware is binary in nature and that hex is power of 2, the hex representation is often used in computing as a dense representation of binary information. A hex digit represents 4 contiguous bits –known as a nibble. An 8-bit byte is two hex digits, such as 2C.

View the full Wikipedia page for Hexadecimal
↑ Return to Menu

Computing in the context of Bit stream

A bitstream (or bit stream), also known as binary sequence, is a sequence of bits.A bytestream is a sequence of bytes. Typically, each byte is an 8-bit quantity, and so the term octet stream is sometimes used interchangeably. An octet may be encoded as a sequence of 8 bits in multiple different ways (see bit numbering) so there is no unique and direct translation between bytestreams and bitstreams.

Bitstreams and bytestreams are used extensively in telecommunications and computing. For example, synchronous bitstreams are carried by SONET, and Transmission Control Protocol transports an asynchronous bytestream.

View the full Wikipedia page for Bit stream
↑ Return to Menu

Computing in the context of Bits per second

In telecommunications and computing, bit rate (bitrate or as a variable R) is the number of bits that are conveyed or processed per unit of time.

The bit rate is expressed in the unit bit per second (symbol: bit/s), often in conjunction with an SI prefix such as kilo (1 kbit/s = 1,000 bit/s), mega (1 Mbit/s = 1,000 kbit/s), giga (1 Gbit/s = 1,000 Mbit/s) or tera (1 Tbit/s = 1,000 Gbit/s). The non-standard abbreviation bps is often used to replace the standard symbol bit/s, so that, for example, 1 Mbps is used to mean one million bits per second.

View the full Wikipedia page for Bits per second
↑ Return to Menu

Computing in the context of Information retrieval

Information retrieval (IR) in computing and information science is the task of identifying and retrieving information system resources that are relevant to an information need. The information need can be specified in the form of a search query. In the case of document retrieval, queries can be based on full-text or other content-based indexing. Information retrieval is the science of searching for information in a document, searching for documents themselves, and also searching for the metadata that describes data, and for databases of texts, images or sounds. Cross-modal retrieval implies retrieval across modalities.

Automated information retrieval systems are used to reduce what has been called information overload. An IR system is a software system that provides access to books, journals and other documents; it also stores and manages those documents. Web search engines are the most visible IR applications.

View the full Wikipedia page for Information retrieval
↑ Return to Menu

Computing in the context of Source code

In computing, source code, or simply code or source, is human readable plain text that can eventually result in controlling the behavior of a computer. In order to control a computer, it must be processed by a computer program – either executed directly via an interpreter or translated into a more computer-consumable form such as via a compiler. Sometimes, code is compiled directly to machine code so that it can be run in the native language of the computer without further processing. But, many modern environments involve compiling to an intermediate representation such as bytecode that can either run via an interpreter or be compiled on-demand to machine code via just-in-time compilation.

View the full Wikipedia page for Source code
↑ Return to Menu

Computing in the context of Machine code

In computing, machine code is data encoded and structured to control a computer's central processing unit (CPU) via its programmable interface. A computer program consists primarily of sequences of machine-code instructions. Machine code is classified as native with respect to its host CPU since it is the language that the CPU interprets directly. A software interpreter is a virtual machine that processes virtual machine code.

A machine-code instruction causes the CPU to perform a specific task such as:

View the full Wikipedia page for Machine code
↑ Return to Menu

Computing in the context of Library (computing)

In computing, a library is a collection of resources that can be used during software development to implement a computer program. Commonly, a library consists of executable code such as compiled functions and classes, or a library can be a collection of source code. A resource library may contain data such as images and text.

A library can be used by multiple, independent consumers (programs and other libraries). This differs from resources defined in a program which can usually only be used by that program. When a consumer uses a library resource, it gains the value of the library without having to implement it itself. Libraries encourage software reuse in a modular fashion. Libraries can use other libraries resulting in a hierarchy of libraries in a program.

View the full Wikipedia page for Library (computing)
↑ Return to Menu

Computing in the context of Character (computing)

In computing and telecommunications, a character is the encoded representation of a natural language character (including letter, numeral and punctuation), whitespace (space or tab), or a control character (controls computer hardware that consumes character-based data). A sequence of characters is called a string.

Some character encoding systems represent each character using a fixed number of bits whereas other systems use varying sizes. Various fixed-length sizes were used for now obsolete systems such as the six-bit character code, the five-bit Baudot code and even 4-bit systems (with only 16 possible values). The more modern ASCII system uses the 8-bit byte for each character. Today, the Unicode-based UTF-8 encoding uses a varying number of byte-sized code units to define a code point which combine to encode a character.

View the full Wikipedia page for Character (computing)
↑ Return to Menu