Cellular coverage in the context of "Smartphone"

⭐ In the context of smartphones, the integration of satellite messaging and emergency services is primarily intended to address limitations in…

Ad spacer

⭐ Core Definition: Cellular coverage

In telecommunications, the coverage of a radio station is the geographic area where the station can communicate. Broadcasters and telecommunications companies frequently produce coverage maps to indicate to users the station's intended service area. Coverage depends on several factors, such as orography (i.e. mountains) and buildings, technology, radio frequency and perhaps most importantly for two-way telecommunications the sensitivity and transmit efficiency of the consumer equipment. Some frequencies provide better regional coverage, while other frequencies penetrate better through obstacles, such as buildings in cities.

The ability of a mobile phone to connect to a base station depends on the strength of the signal. That may be boosted by higher power transmissions, better antennas, taller antenna masts or alternative solutions like in-building picocells. Normal Macro-Cell signals need to be boosted to pass through buildings, which is a particular problem designing networks for large metropolitan areas with modern skyscrapers, hence the current drive for small cells and micro and pico cells. Signals also do not travel deep underground, so specialized transmission solutions are used to deliver mobile phone coverage into areas such as underground parking garages and subway trains.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Cellular coverage in the context of Smartphone

A smartphone is a mobile device that combines the functionality of a traditional mobile phone with advanced computing capabilities. It typically has a touchscreen interface, allowing users to access a wide range of applications and services, such as web browsing, email, and social media, as well as multimedia playback and streaming. Smartphones have built-in cameras, GPS navigation, and support for various communication methods, including voice calls, text messaging, and internet-based messaging apps. Smartphones are distinguished from older-design feature phones by their more advanced hardware capabilities and extensive mobile operating systems, access to the internet, business applications, mobile payments, and multimedia functionality, including music, video, gaming, radio, and television.

Smartphones typically feature metal–oxide–semiconductor (MOS) integrated circuit (IC) chips, various sensors, and support for multiple wireless communication protocols. Examples of smartphone sensors include accelerometers, barometers, gyroscopes, and magnetometers; they can be used by both pre-installed and third-party software to enhance functionality. Wireless communication standards supported by smartphones include Wi-Fi, Bluetooth, Hotspots and satellite navigation. By the mid-2020s, manufacturers began integrating satellite messaging and emergency services, expanding their utility in remote areas without reliable cellular coverage. Smartphones have largely replaced personal digital assistant (PDA) devices, handheld/palm-sized PCs, portable media players (PMP), point-and-shoot cameras, camcorders, and, to a lesser extent, handheld video game consoles, e-reader devices, pocket calculators, and GPS tracking units.

↓ Explore More Topics
In this Dossier

Cellular coverage in the context of Smartphones

A smartphone is a mobile device that combines the functionality of a traditional mobile phone with advanced computing capabilities. It typically has a touchscreen interface, allowing users to access a wide range of applications and services, such as web browsing, email, and social media, as well as multimedia playback and streaming. Smartphones have built-in cameras, GPS navigation, and support for various communication methods, including voice calls, text messaging, and internet-based messaging apps. Smartphones are distinguished from older-design feature phones by their more advanced hardware capabilities and extensive mobile operating systems, access to the internet, business applications, mobile payments, and multimedia functionality, including music, video, gaming, radio, and television.

Smartphones typically feature metal–oxide–semiconductor (MOS) integrated circuit (IC) chips, various sensors, and support for multiple wireless communication protocols. Examples of smartphone sensors include accelerometers, barometers, gyroscopes, and magnetometers; they can be used by both pre-installed and third-party software to enhance functionality. Wireless communication standards supported by smartphones include LTE, 5G NR, Wi-Fi, Bluetooth, and satellite navigation. By the mid-2020s, manufacturers began integrating satellite messaging and emergency services, expanding their utility in remote areas without reliable cellular coverage. Smartphones have largely replaced personal digital assistant (PDA) devices, handheld/palm-sized PCs, portable media players (PMP), point-and-shoot cameras, camcorders, and, to a lesser extent, handheld video game consoles, e-reader devices, pocket calculators, and GPS tracking units.

↑ Return to Menu