Cohesion (chemistry) in the context of Interatomic potential


Cohesion (chemistry) in the context of Interatomic potential

Cohesion (chemistry) Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Cohesion (chemistry) in the context of "Interatomic potential"


⭐ Core Definition: Cohesion (chemistry)

In chemistry and physics, cohesion (from Latin cohaesiō 'cohesion, unity'), also called cohesive attraction or cohesive force, is the action or property of like molecules sticking together, being mutually attractive. It is an intrinsic property of a substance that is caused by the shape and structure of its molecules, which makes the distribution of surrounding electrons irregular when molecules get close to one another, creating an electrical attraction that can maintain a macroscopic structure such as a water drop. Cohesion allows for surface tension, creating a "solid-like" state upon which light-weight or low-density materials can be placed.

↓ Menu
HINT:

👉 Cohesion (chemistry) in the context of Interatomic potential

Interatomic potentials are mathematical functions to calculate the potential energy of a system of atoms with given positions in space. Interatomic potentials are widely used as the physical basis of molecular mechanics and molecular dynamics simulations in computational chemistry, computational physics and computational materials science to explain and predict materials properties. Examples of quantitative properties and qualitative phenomena that are explored with interatomic potentials include lattice parameters, surface energies, interfacial energies, adsorption, cohesion, thermal expansion, and elastic and plastic material behavior, as well as chemical reactions.

↓ Explore More Topics
In this Dossier

Cohesion (chemistry) in the context of Surface tension

Surface tension is the tendency of liquid surfaces at rest to shrink into the minimum surface area possible. Surface tension is what allows objects with a higher density than water such as razor blades and insects (e.g. water striders) to float on a water surface without becoming even partly submerged.

At liquid–air interfaces, surface tension results from the greater attraction of liquid molecules to each other (due to cohesion) than to the molecules in the air (due to adhesion).

View the full Wikipedia page for Surface tension
↑ Return to Menu

Cohesion (chemistry) in the context of Binder (material)

A binder or binding agent is any material or substance that holds or draws other materials together to form a cohesive whole mechanically, chemically, by adhesion or cohesion.

More narrowly, binders are liquid or dough-like substances that harden by a chemical or physical process and bind fibres, filler powder and other particles added into it. Examples include glue, adhesive and thickening.

View the full Wikipedia page for Binder (material)
↑ Return to Menu

Cohesion (chemistry) in the context of Wetting

Wetting is the ability of a liquid to maintain contact with a solid surface by displacing another substance or material - either a gas, or other liquid not miscible with the wetting liquid - due to the differential strength of intermolecular interactions with the surface.

The degree of wetting, or wettability, is dependent on the force balance between adhesive and cohesive forces, occurring when liquid and solid make contact in the presence of another physical phase. As such, wetting is of importance to bonding and adherence of substances in different phases.

View the full Wikipedia page for Wetting
↑ Return to Menu

Cohesion (chemistry) in the context of Van der Waals force

In molecular physics and chemistry, the van der Waals force (sometimes van der Waals' force) is a distance-dependent interaction between atoms or molecules. Unlike ionic or covalent bonds, these attractions do not result from a chemical electronic bond; they are comparatively weak and therefore more susceptible to disturbance. The van der Waals force quickly vanishes at longer distances between interacting molecules.

Named after Dutch physicist Johannes Diderik van der Waals, the van der Waals force plays a fundamental role in fields as diverse as supramolecular chemistry, structural biology, polymer science, nanotechnology, surface science, and condensed matter physics. It also underlies many properties of organic compounds and molecular solids, including their solubility in polar and non-polar media.

View the full Wikipedia page for Van der Waals force
↑ Return to Menu

Cohesion (chemistry) in the context of Lattice energy

In chemistry, the lattice energy is the energy change (released) upon formation of one mole of a crystalline compound from its infinitely separated constituents, which are assumed to initially be in the gaseous state at 0 K. It is a measure of the cohesive forces that bind crystalline solids. The size of the lattice energy is connected to many other physical properties including solubility, hardness, and volatility. Since it generally cannot be measured directly, the lattice energy is usually deduced from experimental data via the Born–Haber cycle.

View the full Wikipedia page for Lattice energy
↑ Return to Menu

Cohesion (chemistry) in the context of Adhesion

Adhesion is the tendency of dissimilar particles or surfaces to cling to one another. (Cohesion refers to the tendency of similar or identical particles and surfaces to cling to one another.)

The forces that cause adhesion and cohesion can be divided into several types. The intermolecular forces responsible for the function of various kinds of stickers and sticky tape fall into the categories of chemical adhesion, dispersive adhesion, and diffusive adhesion. In addition to the cumulative magnitudes of these intermolecular forces, there are also certain emergent mechanical effects.

View the full Wikipedia page for Adhesion
↑ Return to Menu

Cohesion (chemistry) in the context of Surface energy

In surface science, surface energy (also interfacial free energy or surface free energy) quantifies the disruption of intermolecular bonds that occurs when a surface is created. In solid-state physics, surfaces must be intrinsically less energetically favorable than the bulk of the material (that is, the atoms on the surface must have more energy than the atoms in the bulk), otherwise there would be a driving force for surfaces to be created, removing the bulk of the material by sublimation. The surface energy may therefore be defined as the excess energy at the surface of a material compared to the bulk, or it is the work required to build an area of a particular surface. Another way to view the surface energy is to relate it to the work required to cut a bulk sample, creating two surfaces. There is "excess energy" as a result of the now-incomplete, unrealized bonding between the two created surfaces.

Cutting a solid body into pieces disrupts its bonds and increases the surface area, and therefore increases surface energy. If the cutting is done reversibly, then conservation of energy means that the energy consumed by the cutting process will be equal to the energy inherent in the two new surfaces created. The unit surface energy of a material would therefore be half of its energy of cohesion, all other things being equal; in practice, this is true only for a surface freshly prepared in vacuum. Surfaces often change their form away from the simple "cleaved bond" model just implied above. They are found to be highly dynamic regions, which readily rearrange or react, so that energy is often reduced by such processes as passivation or adsorption.

View the full Wikipedia page for Surface energy
↑ Return to Menu

Cohesion (chemistry) in the context of Particle aggregation

Particle agglomeration refers to the formation of assemblages in a suspension and represents a mechanism leading to the functional destabilization of colloidal systems. During this process, particles dispersed in the liquid phase stick to each other, and spontaneously form irregular particle assemblages, flocs, or agglomerates. This phenomenon is also referred to as coagulation or flocculation and such a suspension is also called unstable. Particle agglomeration can be induced by adding salts or other chemicals referred to as coagulant or flocculant.

Particle agglomeration can be a reversible or irreversible process. Particle agglomerates defined as "hard agglomerates" are more difficult to redisperse to the initial single particles. In the course of agglomeration, the agglomerates will grow in size, and as a consequence they may settle to the bottom of the container, which is referred to as sedimentation. Alternatively, a colloidal gel may form in concentrated suspensions which changes its rheological properties. The reverse process whereby particle agglomerates are re-dispersed as individual particles, referred to as peptization, hardly occurs spontaneously, but may occur under stirring or shear.

View the full Wikipedia page for Particle aggregation
↑ Return to Menu

Cohesion (chemistry) in the context of Meniscus (liquid)

In physics (particularly liquid statics), the meniscus (pl.: menisci, from Greek 'crescent') is the curve in the upper surface of a liquid close to the surface of the container or another object, produced by surface tension.

A concave meniscus occurs when the attraction between the particles of the liquid and the container (adhesion) is more than half the attraction of the particles of the liquid to each other (cohesion), causing the liquid to climb the walls of the container (see Surface tension § Causes). This occurs between water and glass. Water-based fluids like sap, honey, and milk also have a concave meniscus in glass or other wettable containers.

View the full Wikipedia page for Meniscus (liquid)
↑ Return to Menu