Thermal expansion in the context of Interatomic potential


Thermal expansion in the context of Interatomic potential

Thermal expansion Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Thermal expansion in the context of "Interatomic potential"


⭐ Core Definition: Thermal expansion

Thermal expansion is the tendency of matter to increase in length, area, or volume, changing its size and density, in response to an increase in temperature (usually excluding phase transitions).In simple words, the change in size of a body due to heating is called thermal expansion. Substances usually contract with decreasing temperature (thermal contraction), with rare exceptions within limited temperature ranges (negative thermal expansion). The SI unit of thermal expansion is inverse Kelvin (1/K).

Temperature is a monotonic function of the average molecular kinetic energy of a substance. In simple words, temperature is the measure of kinetic energy of a body or the measure of hotness or coldness of a body. As energy in particles increases, they start moving faster and faster, weakening the intermolecular forces between them and therefore expanding the substance.When a substance is heated, molecules begin to vibrate and move more, usually creating more distance between themselves.

↓ Menu
HINT:

👉 Thermal expansion in the context of Interatomic potential

Interatomic potentials are mathematical functions to calculate the potential energy of a system of atoms with given positions in space. Interatomic potentials are widely used as the physical basis of molecular mechanics and molecular dynamics simulations in computational chemistry, computational physics and computational materials science to explain and predict materials properties. Examples of quantitative properties and qualitative phenomena that are explored with interatomic potentials include lattice parameters, surface energies, interfacial energies, adsorption, cohesion, thermal expansion, and elastic and plastic material behavior, as well as chemical reactions.

↓ Explore More Topics
In this Dossier

Thermal expansion in the context of Oracle bone

Oracle bones are pieces of ox scapula and turtle plastron which were used in pyromancy – a form of divination – during the Late Shang period (c. 1250 – c. 1050 BCE) in ancient China. Scapulimancy is the specific term if ox scapulae were used for the divination, plastromancy if turtle plastrons were used. A recent count estimated that there were about 13,000 bones with a total of a little over 130,000 inscriptions in collections in China and some fourteen other countries.

Diviners would submit questions to deities regarding weather, crop planting, the fortunes of members of the royal family, military endeavors, and similar topics. These questions were carved onto the bone or shell in oracle bone script using a sharp tool. Intense heat was then applied with a metal rod until the bone or shell cracked due to thermal expansion. The diviner would then interpret the pattern of cracks and write the prognostication upon the piece as well. Pyromancy with bones continued in China into the Zhou dynasty, but the questions and prognostications were increasingly written with brushes and cinnabar ink, which degraded over time.

View the full Wikipedia page for Oracle bone
↑ Return to Menu

Thermal expansion in the context of Sea level rise

The sea level has been rising since the end of the Last Glacial Maximum, which was around 20,000 years ago. Between 1901 and 2018, the average sea level rose by 15–25 cm (6–10 in), with an increase of 2.3 mm (0.091 in) per year since the 1970s. This was faster than the sea level had ever risen over at least the past 3,000 years. The rate accelerated to 4.62 mm (0.182 in)/yr for the decade 2013–2022. Climate change due to human activities is the main cause of this persistent acceleration. Between 1993 and 2018, melting ice sheets and glaciers accounted for 44% of sea level rise, with another 42% resulting from thermal expansion of water.

Sea level rise lags behind changes in the Earth's temperature by decades, and sea level rise will therefore continue to accelerate between now and 2050 in response to warming that has already happened. What happens after that depends on future human greenhouse gas emissions. If there are very deep cuts in emissions, sea level rise would slow between 2050 and 2100. The reported factors of increase in flood hazard potential are often exceedingly large, ranging from 10 to 1000 for even modest sea-level rise scenarios of 0.5 m or less. It could then reach by 2100 between 30 cm (1 ft) and 1.0 m (3+13 ft) from now and approximately 60 cm (2 ft) to 130 cm (4+12 ft) from the 19th century. With high emissions it would instead accelerate further, and could rise by 50 cm (1.6 ft) or even by 1.9 m (6.2 ft) by 2100. In the long run, sea level rise would amount to 2–3 m (7–10 ft) over the next 2000 years if warming stays to its current 1.5 °C (2.7 °F) over the pre-industrial past. It would be 19–22 metres (62–72 ft) if warming peaks at 5 °C (9.0 °F).

View the full Wikipedia page for Sea level rise
↑ Return to Menu

Thermal expansion in the context of Solid

Solid is a state of matter in which atoms are closely packed and are difficult to move past each other. Solids resist compression, expansion, or external forces that would alter its shape, with the degree of resistance being dependent upon the specific material under consideration. Solids also always possess the least amount of kinetic energy per atom/molecule relative to other phases or, equivalently stated, solids are formed when matter in the liquid / gas phase is cooled below a certain temperature. This temperature is called the melting point of the substance and is an intrinsic property; i.e. independent of how much of the matter there is. The vast majority of substances, when in the solid state, can be arranged in one of a few ubiquitous structures.

Solids are characterized by structural rigidity and resistance to applied external forces and pressure. Unlike liquids, solids do not flow to take on the shape of their container, nor do they expand to fill the entire available volume like a gas. Much like the other three fundamental phases, solids also expand when heated, the thermal energy put into increasing the distance and reducing the potential energy between atoms. However, solids do this to a much lesser extent. When heated to their melting point or sublimation point, solids melt into a liquid or sublimate directly into a gas, respectively. For solids that directly sublimate into a gas, the melting point is replaced by the sublimation point. As a rule of thumb, melting will occur if the subjected pressure is higher than the substance's triple point pressure, and sublimation will occur otherwise. Melting and melting points refer exclusively to transitions between solids and liquids. Melting occurs across a great extent of temperatures, ranging from 0.10 K for helium-3 under 30 bars (3 MPa) of pressure, to around 4,100 K at 1 atm for the composite refractory material hafnium carbonitride.

View the full Wikipedia page for Solid
↑ Return to Menu

Thermal expansion in the context of Thunder

Thunder is the sound caused by lightning. Depending upon the distance from and nature of the lightning, it can range from a long, low rumble to a sudden, loud crack. The sudden increase in temperature and hence pressure caused by the lightning produces rapid expansion of the air in the path of a lightning bolt. In turn, this expansion of air creates a sonic shock wave, often referred to as a "thunderclap" or "peal of thunder". The scientific study of thunder is known as brontology and the irrational fear (phobia) of thunder is called brontophobia.

View the full Wikipedia page for Thunder
↑ Return to Menu

Thermal expansion in the context of Gravitational collapse

Gravitational collapse is the contraction of an astronomical object due to the influence of its own gravity, which tends to draw matter inward toward the center of gravity. Gravitational collapse is a fundamental mechanism for structure formation in the universe. Over time an initial, relatively smooth distribution of matter, after sufficient accretion, may collapse to form pockets of higher density, such as stars or black holes.

Star formation involves a gradual gravitational collapse of interstellar medium into clumps of molecular clouds and potential protostars. The compression caused by the collapse raises the temperature until thermonuclear fusion occurs at the center of the star, at which point the collapse gradually comes to a halt as the outward thermal pressure balances the gravitational forces. The star then exists in a state of thermodynamic equilibrium. During the star's evolution a star might collapse again and reach several new states of equilibrium.

View the full Wikipedia page for Gravitational collapse
↑ Return to Menu

Thermal expansion in the context of Convection

Convection is single or multiphase fluid flow that occurs spontaneously through the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravity (see buoyancy). When the cause of the convection is unspecified, convection due to the effects of thermal expansion and buoyancy can be assumed. Convection may also take place in soft solids or mixtures where particles can flow.

Convective flow may be transient (such as when a multiphase mixture of oil and water separates) or steady state (see convection cell). The convection may be due to gravitational, electromagnetic or fictitious body forces. Heat transfer by natural convection plays a role in the structure of Earth's atmosphere, its oceans, and its mantle. Discrete convective cells in the atmosphere can be identified by clouds, with stronger convection resulting in thunderstorms. Natural convection also plays a role in stellar physics. Convection is often categorised or described by the main effect causing the convective flow; for example, thermal convection.

View the full Wikipedia page for Convection
↑ Return to Menu

Thermal expansion in the context of Machinability

Machinability is the ease with which a metal can be cut (machined) permitting the removal of the material with a satisfactory finish at low cost. Materials with good machinability (free-machining materials) require little power to cut, can be cut quickly, easily obtain a good finish, and do not cause significant wear on the tooling. Factors that typically improve a material's performance often degrade its machinability, presenting a significant engineering challenge.

Machinability can be difficult to predict due to the large number of variables involved in the machining process. Two sets of factors are the condition and physical properties of the work materials. The condition of the work material includes at least eight factors: microstructure, grain size, heat treatment, chemical composition, fabrication, hardness, yield strength, and tensile strength. Physical properties are those of the individual material groups, such as the modulus of elasticity, thermal conductivity, thermal expansion, and work hardening. Other important factors are operating conditions, cutting tool material and geometry, and the parameters of the specific machining process being performed.

View the full Wikipedia page for Machinability
↑ Return to Menu

Thermal expansion in the context of Fused quartz

Fused quartz, fused silica or quartz glass is a glass consisting of almost pure silica (silicon dioxide, SiO2) in amorphous (non-crystalline) form. This differs from all other commercial glasses, such as soda–lime glass, lead glass, or borosilicate glass, in which other ingredients are added which change the glasses' optical and physical properties, such as lowering the melt temperature, the spectral transmission range, or the mechanical strength. Fused quartz, therefore, has high working and melting temperatures, making it difficult to form and less desirable for most common applications, but is much stronger, more chemically resistant, and exhibits lower thermal expansion, making it more suitable for many specialized uses such as lighting and scientific applications.

The terms fused quartz and fused silica are used interchangeably but can refer to different manufacturing techniques, resulting in different trace impurities. However fused quartz, being in the glassy state, has quite different physical properties compared to crystalline quartz despite being made of the same substance. Due to its physical properties it finds specialty uses in semiconductor fabrication and laboratory equipment, for instance.

View the full Wikipedia page for Fused quartz
↑ Return to Menu

Thermal expansion in the context of Hale reflector

The Hale Telescope is a 200-inch (5.1 m), f/3.3 reflecting telescope at the Palomar Observatory in San Diego County, California, US, named after astronomer George Ellery Hale. With funding from the Rockefeller Foundation in 1928, he orchestrated the planning, design, and construction of the observatory, but with the project ending up taking 20 years he did not live to see its commissioning. The Hale was groundbreaking for its time, with double the diameter of the second-largest telescope, and pioneered many new technologies in telescope mount design and in the design and fabrication of its large aluminum coated "honeycomb" low thermal expansion Pyrex mirror. It was completed in 1949 and is still in active use.

The Hale Telescope represented the technological limit in building large optical telescopes for over 30 years. It was the largest telescope in the world from its construction in 1949 until the Soviet BTA-6 was built in 1976, and the second largest until the construction of the Keck Observatory Keck 1 in Hawaii in 1993.

View the full Wikipedia page for Hale reflector
↑ Return to Menu

Thermal expansion in the context of Mercury-in-glass thermometer

The mercury-in-glass or mercury thermometer is a thermometer that uses the thermal expansion and contraction of liquid mercury to indicate the temperature.

View the full Wikipedia page for Mercury-in-glass thermometer
↑ Return to Menu

Thermal expansion in the context of Expansion joint

An expansion joint, or movement joint, is an assembly designed to hold parts together while safely absorbing temperature-induced expansion and contraction of building materials. They are commonly found between sections of buildings, bridges, sidewalks, railway tracks, piping systems, ships, and other structures.

Building faces, concrete slabs, and pipelines expand and contract due to warming and cooling from diurnal and seasonal variation, or due to other heat sources. Before expansion joint gaps were built into these structures, they would crack under the stress induced.

View the full Wikipedia page for Expansion joint
↑ Return to Menu

Thermal expansion in the context of Negative thermal expansion

Negative thermal expansion (NTE) is an unusual physicochemical process in which some materials contract upon heating, rather than expand as most other materials do. The most well-known material with NTE is water at 0 to 3.98 °C. Also, the density of solid water (ice) is lower than the density of liquid water at standard pressure. Water's NTE is the reason why water ice floats, rather than sinks, in liquid water. Materials which undergo NTE have a range of potential engineering, photonic, electronic, and structural applications. For example, if one were to mix a negative thermal expansion material with a "normal" material which expands on heating, it could be possible to use it as a thermal expansion compensator that might allow for forming composites with tailored or even close to zero thermal expansion.

View the full Wikipedia page for Negative thermal expansion
↑ Return to Menu

Thermal expansion in the context of Newton scale

The Newton scale is a temperature scale devised by Isaac Newton in 1701. He called his device a "thermometer", but he did not use the term "temperature", speaking of "degrees of heat" (gradus caloris) instead. Newton's publication represents the first attempt to introduce an objective way of measuring (what would come to be called) temperature (alongside the Rømer scale published at nearly the same time). With Newton using melting points of alloys of various metals such as bismuth, lead and tin, he was the first to employ melting or freezing points of metals for a temperature scale. He also contemplated the idea of absolute zero. Newton likely developed his scale for practical use rather than for a theoretical interest in thermodynamics; he had been appointed Warden of the Mint in 1695, and Master of the Mint in 1699, and his interest in the melting points of metals was likely inspired by his duties in connection with the Royal Mint.

Newton used linseed oil as thermometric material and measured its change of volume against his reference points. He set as 0 on his scale "the heat of air in winter at which water begins to freeze" (Calor aeris hyberni ubi aqua incipit gelu rigescere), reminiscent of the standard of the modern Celsius scale (i.e. 0 °N = 0 °C), but he has no single second reference point; he does give the "heat at which water begins to boil" as 33, but this is not a defining reference; the values for body temperature and the freezing and boiling point of water suggest a conversion factor between the Newton and the Celsius scale of between about 3.08 (12 °N = 37 °C) and 3.03 (33 °N = 100 °C) but since the objectively verifiable reference points given result in irreconcilable data (especially for high temperatures), no unambiguous "conversion" between the scales is possible.

View the full Wikipedia page for Newton scale
↑ Return to Menu