Cohesion (chemistry) in the context of "Surface energy"

Play Trivia Questions online!

or

Skip to study material about Cohesion (chemistry) in the context of "Surface energy"

Ad spacer

⭐ Core Definition: Cohesion (chemistry)

In chemistry and physics, cohesion (from Latin cohaesiō 'cohesion, unity'), also called cohesive attraction or cohesive force, is the action or property of like molecules sticking together, being mutually attractive. It is an intrinsic property of a substance that is caused by the shape and structure of its molecules, which makes the distribution of surrounding electrons irregular when molecules get close to one another, creating an electrical attraction that can maintain a macroscopic structure such as a water drop. Cohesion allows for surface tension, creating a "solid-like" state upon which light-weight or low-density materials can be placed.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Cohesion (chemistry) in the context of Surface tension

Surface tension is the tendency of liquid surfaces at rest to shrink into the minimum surface area possible. Surface tension is what allows objects with a higher density than water such as razor blades and insects (e.g. water striders) to float on a water surface without becoming even partly submerged.

At liquid–air interfaces, surface tension results from the greater attraction of liquid molecules to each other (due to cohesion) than to the molecules in the air (due to adhesion).

↑ Return to Menu

Cohesion (chemistry) in the context of Binder (material)

A binder or binding agent is any material or substance that holds or draws other materials together to form a cohesive whole mechanically, chemically, by adhesion or cohesion.

More narrowly, binders are liquid or dough-like substances that harden by a chemical or physical process and bind fibres, filler powder and other particles added into it. Examples include glue, adhesive and thickening.

↑ Return to Menu

Cohesion (chemistry) in the context of Wetting

Wetting is the ability of a liquid to maintain contact with a solid surface by displacing another substance or material - either a gas, or other liquid not miscible with the wetting liquid - due to the differential strength of intermolecular interactions with the surface.

The degree of wetting, or wettability, is dependent on the force balance between adhesive and cohesive forces, occurring when liquid and solid make contact in the presence of another physical phase. As such, wetting is of importance to bonding and adherence of substances in different phases.

↑ Return to Menu

Cohesion (chemistry) in the context of Van der Waals force

In molecular physics and chemistry, the van der Waals force (sometimes van der Waals' force) is a distance-dependent interaction between atoms or molecules. Unlike ionic or covalent bonds, these attractions do not result from a chemical electronic bond; they are comparatively weak and therefore more susceptible to disturbance. The van der Waals force quickly vanishes at longer distances between interacting molecules.

Named after Dutch physicist Johannes Diderik van der Waals, the van der Waals force plays a fundamental role in fields as diverse as supramolecular chemistry, structural biology, polymer science, nanotechnology, surface science, and condensed matter physics. It also underlies many properties of organic compounds and molecular solids, including their solubility in polar and non-polar media.

↑ Return to Menu

Cohesion (chemistry) in the context of Lattice energy

In chemistry, the lattice energy is the energy change (released) upon formation of one mole of a crystalline compound from its infinitely separated constituents, which are assumed to initially be in the gaseous state at 0 K. It is a measure of the cohesive forces that bind crystalline solids. The size of the lattice energy is connected to many other physical properties including solubility, hardness, and volatility. Since it generally cannot be measured directly, the lattice energy is usually deduced from experimental data via the Born–Haber cycle.

↑ Return to Menu

Cohesion (chemistry) in the context of Adhesion

Adhesion is the tendency of dissimilar particles or surfaces to cling to one another. (Cohesion refers to the tendency of similar or identical particles and surfaces to cling to one another.)

The forces that cause adhesion and cohesion can be divided into several types. The intermolecular forces responsible for the function of various kinds of stickers and sticky tape fall into the categories of chemical adhesion, dispersive adhesion, and diffusive adhesion. In addition to the cumulative magnitudes of these intermolecular forces, there are also certain emergent mechanical effects.

↑ Return to Menu