Chain reaction in the context of "Lipid peroxidation"

Play Trivia Questions online!

or

Skip to study material about Chain reaction in the context of "Lipid peroxidation"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Chain reaction in the context of Lipid peroxidation

Lipid peroxidation, or lipid oxidation, is a complex chemical process that leads to oxidative degradation of lipids, resulting in the formation of peroxide and hydroperoxide derivatives. It occurs when free radicals, specifically reactive oxygen species (ROS), interact with lipids within cell membranes, typically polyunsaturated fatty acids (PUFAs) as they have carbon–carbon double bonds. This reaction leads to the formation of lipid radicals, collectively referred to as lipid peroxides or lipid oxidation products (LOPs), which in turn react with other oxidizing agents, leading to a chain reaction that results in oxidative stress and cell damage.

In pathology and medicine, lipid peroxidation plays a role in cell damage which has broadly been implicated in the pathogenesis of various diseases and disease states, including ageing, whereas in food science lipid peroxidation is one of many pathways to rancidity.

↓ Explore More Topics
In this Dossier

Chain reaction in the context of Uranium-238

Uranium-238 (
U
or U-238) is the most common isotope of uranium found in nature, with a relative abundance above 99%. Unlike uranium-235, it is non-fissile, which means it cannot sustain a chain reaction in a thermal-neutron reactor. However, it is fissionable by fast neutrons, and is fertile, meaning it can be transmuted to fissile plutonium-239. U cannot support a chain reaction because inelastic scattering reduces neutron energy below the range where fast fission of one or more next-generation nuclei is probable. Doppler broadening of U's neutron absorption resonances, increasing absorption as fuel temperature increases, is also an essential negative feedback mechanism for reactor control.

The isotope has a half-life of 4.463 billion years (1.408×10 s). Due to its abundance and half-life relative rate of decay to other radioactive elements, U is responsible for about 40% of the radioactive heat produced within the Earth. The U decay chain contributes six electron anti-neutrinos per U nucleus (one per beta decay), resulting in a large detectable geoneutrino signal when decays occur within the Earth. The decay of U to daughter isotopes is extensively used in radiometric dating, particularly for material older than approximately 1 million years.

↑ Return to Menu

Chain reaction in the context of Chain of prior occurrences

A chain of events is a number of actions and their effects that are contiguous and linked together that results in a particular outcome. In the physical sciences, chain reactions are a primary example.

↑ Return to Menu

Chain reaction in the context of Autoxidation

Autoxidation (sometimes auto-oxidation) refers to oxidations brought about by reactions with oxygen at normal temperatures, without the intervention of flame or electric spark. The term is usually used to describe the gradual degradation of organic compounds in air at ambient temperatures. Many common phenomena can be attributed to autoxidation, such as food going rancid, the 'drying' of varnishes and paints, and the perishing of rubber. It is also an important concept in both industrial chemistry and biology. Autoxidation is therefore a fairly broad term and can encompass examples of photooxygenation and catalytic oxidation.

The common mechanism is a free radical chain reaction, where the addition of oxygen gives rise to hydroperoxides and their associated peroxy radicals (ROO•). Typically, an induction period is seen at the start where there is little activity; this is followed by a gradually accelerating take-up of oxygen, giving an autocatalytic reaction which can only be kept in check by the use of antioxidants. Unsaturated compounds are the most strongly affected but many organic materials will oxidise in this way given time.

↑ Return to Menu