Neutron absorption in the context of "Uranium-238"

Play Trivia Questions online!

or

Skip to study material about Neutron absorption in the context of "Uranium-238"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Neutron absorption in the context of Uranium-238

Uranium-238 (
U
or U-238) is the most common isotope of uranium found in nature, with a relative abundance above 99%. Unlike uranium-235, it is non-fissile, which means it cannot sustain a chain reaction in a thermal-neutron reactor. However, it is fissionable by fast neutrons, and is fertile, meaning it can be transmuted to fissile plutonium-239. U cannot support a chain reaction because inelastic scattering reduces neutron energy below the range where fast fission of one or more next-generation nuclei is probable. Doppler broadening of U's neutron absorption resonances, increasing absorption as fuel temperature increases, is also an essential negative feedback mechanism for reactor control.

The isotope has a half-life of 4.463 billion years (1.408×10 s). Due to its abundance and half-life relative rate of decay to other radioactive elements, U is responsible for about 40% of the radioactive heat produced within the Earth. The U decay chain contributes six electron anti-neutrinos per U nucleus (one per beta decay), resulting in a large detectable geoneutrino signal when decays occur within the Earth. The decay of U to daughter isotopes is extensively used in radiometric dating, particularly for material older than approximately 1 million years.

↓ Explore More Topics
In this Dossier

Neutron absorption in the context of Fertile material

Fertile material is a material that, although not fissile itself, can be converted into a fissile material by neutron absorption.

↑ Return to Menu

Neutron absorption in the context of Uranium-235

Uranium-235 (
U
or U-235) is an isotope of uranium making up about 0.72% of natural uranium. Unlike the predominant isotope uranium-238, it is fissile, i.e., it can sustain a nuclear chain reaction. It is the only fissile isotope that exists in nature as a primordial nuclide.

Uranium-235 has a half-life of 704 million years. It was discovered in 1935 by Arthur Jeffrey Dempster. Its fission cross section for slow thermal neutrons is about 584.3±1 barns. For fast neutrons it is on the order of 1 barn.Most neutron absorptions induce fission, though a minority (about 15%) result in the formation of uranium-236.

↑ Return to Menu