Rancidity in the context of "Lipid peroxidation"

Play Trivia Questions online!

or

Skip to study material about Rancidity in the context of "Lipid peroxidation"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Rancidity in the context of Lipid peroxidation

Lipid peroxidation, or lipid oxidation, is a complex chemical process that leads to oxidative degradation of lipids, resulting in the formation of peroxide and hydroperoxide derivatives. It occurs when free radicals, specifically reactive oxygen species (ROS), interact with lipids within cell membranes, typically polyunsaturated fatty acids (PUFAs) as they have carbon–carbon double bonds. This reaction leads to the formation of lipid radicals, collectively referred to as lipid peroxides or lipid oxidation products (LOPs), which in turn react with other oxidizing agents, leading to a chain reaction that results in oxidative stress and cell damage.

In pathology and medicine, lipid peroxidation plays a role in cell damage which has broadly been implicated in the pathogenesis of various diseases and disease states, including ageing, whereas in food science lipid peroxidation is one of many pathways to rancidity.

↓ Explore More Topics
In this Dossier

Rancidity in the context of Omega-3 fatty acid

omega−3 oils, ω−3 fatty acids or n−3 fatty acids, are polyunsaturated fatty acids (PUFAs) characterized by the presence of a double bond three atoms away from the terminal methyl group (numbered ω, the last letter of the Greek alphabet) in their chemical structure. They are widely distributed in nature, are important constituents of animal lipid metabolism, and play an important role in the human diet and in human physiology. The three types of omega−3 fatty acids involved in human physiology are α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). ALA can be found in plants, while DHA and EPA are found in algae and fish. Marine algae and phytoplankton are primary sources of omega−3 fatty acids. DHA and EPA accumulate in fish that eat these algae. Common sources of plant oils containing ALA include walnuts, edible seeds and flaxseeds as well as hempseed oil, while sources of EPA and DHA include fish and fish oils, and algae oil.

Almost without exception, animals are unable to synthesize the essential omega−3 fatty acid ALA and can only obtain it through diet. However, they can use ALA, when available, to form EPA and DHA, by creating additional double bonds along its carbon chain (desaturation) and extending it (elongation). ALA (18 carbons and 3 double bonds) is used to make EPA (20 carbons and 5 double bonds), which is then used to make DHA (22 carbons and 6 double bonds). The ability to make the longer-chain omega−3 fatty acids from ALA may be impaired in aging. In foods exposed to air, unsaturated fatty acids are vulnerable to oxidation and rancidity.

↑ Return to Menu