CMOS in the context of WDC 65C02


CMOS in the context of WDC 65C02

CMOS Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about CMOS in the context of "WDC 65C02"


⭐ Core Definition: CMOS

Complementary metal–oxide–semiconductor (CMOS, pronounced "sea-moss", /smɑːs/, /-ɒs/) is a type of metal–oxide–semiconductor field-effect transistor (MOSFET) fabrication process that uses complementary and symmetrical pairs of p-type and n-type MOSFETs for logic functions. CMOS technology is used for constructing integrated circuit (IC) chips, including microprocessors, microcontrollers, memory chips, and other digital logic circuits. CMOS overtook NMOS logic as the dominant MOSFET fabrication process for very large-scale integration (VLSI) chips in the 1980s, replacing earlier transistor–transistor logic (TTL) technology at the same time. CMOS has since remained the standard fabrication process for MOSFET semiconductor devices. As of 2011, 99% of IC chips, including most digital, analog and mixed-signal ICs, were fabricated using CMOS technology.

In 1948, Bardeen and Brattain patented an insulated-gate transistor (IGFET) with an inversion layer. Bardeen's concept forms the basis of CMOS technology today. The CMOS process was presented by Fairchild Semiconductor's Frank Wanlass and Chih-Tang Sah at the International Solid-State Circuits Conference in 1963. Wanlass later filed US patent 3,356,858 for CMOS circuitry and it was granted in 1967. RCA commercialized the technology with the trademark "COS-MOS" in the late 1960s, forcing other manufacturers to find another name, leading to "CMOS" becoming the standard name for the technology by the early 1970s. Two important characteristics of CMOS devices are high noise immunity and low static power consumption. Since one transistor of the MOSFET pair is always off, the series combination draws significant power only momentarily during switching between on and off states. Consequently, CMOS devices do not produce as much waste heat as other forms of logic, like NMOS logic or transistor–transistor logic (TTL), which normally have some standing current even when not changing state. These characteristics allow CMOS to integrate a high density of logic functions on a chip. It was primarily for this reason that CMOS became the most widely used technology to be implemented in VLSI chips.

↓ Menu
HINT:

👉 CMOS in the context of WDC 65C02

The Western Design Center (WDC) 65C02 microprocessor is an enhanced CMOS version of the popular nMOS-based 8-bit MOS Technology 6502. It uses less power than the original 6502, fixes several problems, and adds new instructions and addressing modes. The power usage is on the order of 10 to 20 times less than the original 6502 running at the same speed; its reduced power consumption has made it useful in portable computer roles and industrial microcontroller systems. The 65C02 has also been used in some home computers, as well as in embedded applications, including implanted medical devices.

Development of the WDC 65C02 began in 1981 with samples released in early 1983. The 65C02was officially released sometime shortly after. WDC licensed the design to Synertek, NCR, GTE Microcircuits, and Rockwell Semiconductor. Rockwell's primary interest was in the embedded market and asked for several new commands to be added to aid in this role. These were later copied back into the baseline version, at which point WDC added two new commands of their own to create the W65C02. Sanyo later licensed the design as well, and Seiko Epson produced a further modified version as the HuC6280.

↓ Explore More Topics
In this Dossier

CMOS in the context of Image sensor

An image sensor or imager is a device that detects and conveys information used to form an image. It does so by converting the variable attenuation of light waves (as they pass through or reflect off objects) into signals, small bursts of current that convey the information. The waves can be light or other electromagnetic radiation. Image sensors are used in electronic imaging devices of both analog and digital types, which include digital cameras, camera modules, camera phones, optical mouse devices, medical imaging equipment, night vision equipment such as thermal imaging devices, radar, sonar, and others. As technology changes, electronic and digital imaging tends to replace chemical and analog imaging.

The two main types of electronic image sensors are the charge-coupled device (CCD) and the active-pixel sensor (CMOS sensor). Both CCD and CMOS sensors are based on metal–oxide–semiconductor (MOS) technology, with CCDs based on MOS capacitors and CMOS sensors based on MOSFET (MOS field-effect transistor) amplifiers. Analog sensors for invisible radiation tend to involve vacuum tubes of various kinds, while digital sensors include flat-panel detectors.

View the full Wikipedia page for Image sensor
↑ Return to Menu

CMOS in the context of Active-pixel sensor

An active-pixel sensor (APS) is an image sensor where each pixel sensor unit cell has a photodetector (typically a pinned photodiode) and one or more active transistors. In a metal–oxide–semiconductor (MOS) active-pixel sensor, MOS field-effect transistors (MOSFETs) are used as amplifiers. There are different types of APS, including the early NMOS APS and the now much more common complementary MOS (CMOS) APS, also known as the CMOS sensor. CMOS sensors are used in digital camera technologies such as cell phone cameras, web cameras, most modern digital pocket cameras, most digital single-lens reflex cameras (DSLRs), mirrorless interchangeable-lens cameras (MILCs), and lensless imaging for, e.g., blood cells.

CMOS sensors emerged as an alternative to charge-coupled device (CCD) image sensors and eventually outsold them by the mid-2000s.

View the full Wikipedia page for Active-pixel sensor
↑ Return to Menu

CMOS in the context of Frank Wanlass

Frank Marion Wanlass (May 17, 1933, in Thatcher, AZ – September 9, 2010, in Santa Clara, California) was an American electrical engineer. He is best known for inventing, along with Chih-Tang Sah, CMOS (complementary MOS) logic in 1963. CMOS has since become the standard semiconductor device fabrication process for MOSFETs (metal–oxide–semiconductor field-effect transistors).

View the full Wikipedia page for Frank Wanlass
↑ Return to Menu

CMOS in the context of Chih-Tang Sah

Chih-Tang "Tom" Sah (simplified Chinese: 萨支唐; traditional Chinese: 薩支唐; pinyin: Sà Zhītáng; 10 November 1932 – 5 July 2025) is a Chinese-American electronics engineer and condensed matter physicist. He is best known for inventing CMOS (complementary MOS) logic with Frank Wanlass at Fairchild Semiconductor in 1963. CMOS is used in nearly all modern very large-scale integration (VLSI) semiconductor devices.

He was the Pittman Eminent Scholar and a Graduate Research Professor at the University of Florida from 1988 to 2010. He was a Professor of Physics and Professor of Electrical and Computer Engineering, emeritus, at the University of Illinois at Urbana-Champaign, where he taught for 26 years (1962-1988) and guided 40 students to the Ph.D. degree in electrical engineering and in physics and 34 MSEE theses. At the University of Florida, he guided 10 doctoral theses in EE. He has published more than 300 peer-reviewed journal articles with his graduate students and research associates, and presented about 200 invited lectures and 60 contributed papers in China, Europe, Japan, Taiwan and in the United States on transistor physics, technology and evolution.

View the full Wikipedia page for Chih-Tang Sah
↑ Return to Menu

CMOS in the context of W65C816S

The W65C816S (also 65C816 or 65816) is a 16-bit microprocessor (MPU) developed and sold by the Western Design Center (WDC). Introduced in 1985, the W65C816S is an enhanced version of the WDC 65C02 8-bit MPU, itself a CMOS enhancement of the venerable MOS Technology 6502 NMOS MPU. The 65C816 is the CPU for the Apple IIGS and, in modified form, the Super Nintendo Entertainment System.

The 65 in the part's designation comes from its 65C02 compatibility mode, and the 816 signifies that the MPU has selectable 8- and 16-bit register sizes. In addition to the availability of 16-bit registers, the W65C816S extends memory addressing to 24 bits, supporting up to 16 megabytes of random-access memory. It has an enhanced instruction set and a 16-bit stack pointer, as well as several new electrical signals for improved system hardware management.

View the full Wikipedia page for W65C816S
↑ Return to Menu

CMOS in the context of 14 nanometer

The "14 nanometer process" refers to a marketing term for the MOSFET technology node that is the successor to the "22 nm" (or "20 nm") node. The "14 nm" was so named by the International Technology Roadmap for Semiconductors (ITRS). Until about 2011, the node following "22 nm" was expected to be "16 nm". All "14 nm" nodes use FinFET (fin field-effect transistor) technology, a type of multi-gate MOSFET technology that is a non-planar evolution of planar silicon CMOS technology.

Since at least 1997, "process nodes" have been named purely on a marketing basis, and have no relation to the dimensions on the integrated circuit; neither gate length, metal pitch or gate pitch on a "14nm" device is fourteen nanometers. For example, TSMC and Samsung's "10 nm" processes are somewhere between Intel's "14 nm" and "10 nm" processes in transistor density, and TSMC's "7 nm" processes are dimensionally similar to Intel's "10 nm" process.

View the full Wikipedia page for 14 nanometer
↑ Return to Menu

CMOS in the context of NOR gate

The NOR (NOT OR) gate is a digital logic gate that implements logical NOR - it behaves according to the truth table to the right. A HIGH output (1) results if both the inputs to the gate are LOW (0); if one or both input is HIGH (1), a LOW output (0) results. NOR is the result of the negation of the OR operator. It can also in some senses be seen as the inverse of an AND gate. NOR is a functionally complete operation—NOR gates can be combined to generate any other logical function. It shares this property with the NAND gate. By contrast, the OR operator is monotonic as it can only change LOW to HIGH but not vice versa.

In most, but not all, circuit implementations, the negation comes for free—including CMOS and TTL. In such logic families, OR is the more complicated operation; it may use a NOR followed by a NOT. A significant exception is some forms of the domino logic family.

View the full Wikipedia page for NOR gate
↑ Return to Menu

CMOS in the context of Deal–Grove model

The Deal–Grove model mathematically describes the growth of an oxide layer on the surface of a material. In particular, it is used to predict and interpret thermal oxidation of silicon in semiconductor device fabrication. The model was first published in 1965 by Bruce Deal and Andrew Grove of Fairchild Semiconductor, building on Mohamed M. Atalla's work on silicon surface passivation by thermal oxidation at Bell Labs in the late 1950s. This served as a step in the development of CMOS devices and the fabrication of integrated circuits.

View the full Wikipedia page for Deal–Grove model
↑ Return to Menu

CMOS in the context of 555 timer IC

The 555 timer IC is an integrated circuit used in a variety of timer, delay, pulse generation, and oscillator applications. It is one of the most popular timing ICs due to its flexibility and price. Derivatives provide two (556) or four (558) timing circuits in one package. The design was first marketed in 1972 by Signetics and used bipolar junction transistors. Since then, numerous companies have made the original timers and later similar low-power CMOS timers. In 2017, it was said that over a billion 555 timers are produced annually by some estimates, and that the design was "probably the most popular integrated circuit ever made".

View the full Wikipedia page for 555 timer IC
↑ Return to Menu

CMOS in the context of Silicon–germanium

SiGe (/ˈsɪɡ/ or /ˈs/), or silicon–germanium, is an alloy with any molar ratio of silicon and germanium, i.e. with a molecular formula of the form Si1−xGex. It is commonly used as a semiconductor material in integrated circuits (ICs) for heterojunction bipolar transistors or as a strain-inducing layer for CMOS transistors. IBM introduced the technology into mainstream manufacturing in 1989. This relatively new technology offers opportunities in mixed-signal circuit and analog circuit IC design and manufacture. SiGe is also used as a thermoelectric material for high-temperature applications (>700 K).

View the full Wikipedia page for Silicon–germanium
↑ Return to Menu

CMOS in the context of Organic field-effect transistor

An organic field-effect transistor (OFET) is a field-effect transistor using an organic semiconductor in its channel. OFETs can be prepared either by vacuum evaporation of small molecules, by solution-casting of polymers or small molecules, or by mechanical transfer of a peeled single-crystalline organic layer onto a substrate. These devices have been developed to realize low-cost, large-area electronic products and biodegradable electronics. OFETs have been fabricated with various device geometries. The most commonly used device geometry is bottom gate with top drain and source electrodes, because this geometry is similar to the thin-film silicon transistor (TFT) using thermally grown SiO2 as gate dielectric. Organic polymers, such as poly(methyl-methacrylate) (PMMA), can also be used as dielectric. One of the benefits of OFETs, especially compared with inorganic TFTs, is their unprecedented physical flexibility, which leads to biocompatible applications, for instance in the future health care industry of personalized biomedicines and bioelectronics.

In May 2007, Sony reported the first full-color, video-rate, flexible, all plastic display, in which both the thin-film transistors and the light-emitting pixels were made of organic materials.

View the full Wikipedia page for Organic field-effect transistor
↑ Return to Menu