Borehole in the context of "Climate proxy"

⭐ In the context of climate proxies, borehole temperature profiles are considered…

Ad spacer

⭐ Core Definition: Borehole

A borehole is a narrow shaft bored in the ground, either vertically or horizontally. A borehole may be constructed for many different purposes, including the extraction of water (drilled water well and tube well), other liquids (such as petroleum), or gases (such as natural gas). It may also be part of a geotechnical investigation, environmental site assessment, mineral exploration, temperature measurement, as a pilot hole for installing piers or underground utilities, for geothermal installations, or for underground storage of unwanted substances, e.g. in carbon capture and storage.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Borehole in the context of Climate proxy

In the study of past climates ("paleoclimatology"), climate proxies are preserved physical characteristics of the past that stand in for direct meteorological measurements and enable scientists to reconstruct the climatic conditions over a longer fraction of the Earth's history. Reliable global records of climate only began in the 1880s, and proxies provide the only means for scientists to determine climatic patterns before record-keeping began.

A large number of climate proxies have been studied from a variety of geologic contexts. Examples of proxies include stable isotope measurements from ice cores, growth rates in tree rings, species composition of sub-fossil pollen in lake sediment or foraminifera in ocean sediments, temperature profiles of boreholes, and stable isotopes and mineralogy of corals and carbonate speleothems. In each case, the proxy indicator has been influenced by a particular seasonal climate parameter (e.g., summer temperature or monsoon intensity) at the time in which they were laid down or grew. Interpretation of climate proxies requires a range of ancillary studies, including calibration of the sensitivity of the proxy to climate and cross-verification among proxy indicators.

↓ Explore More Topics
In this Dossier

Borehole in the context of Past climates

Paleoclimatology (British spelling, palaeoclimatology) is the scientific study of climates predating the invention of meteorological instruments, when no direct measurement data were available. As instrumental records only span a tiny part of Earth's history, the reconstruction of ancient climate is important to understand natural variation and the evolution of the current climate.

Paleoclimatology uses a variety of proxy methods from Earth and life sciences to obtain data previously preserved within rocks, sediments, boreholes, ice sheets, tree rings, corals, shells, and microfossils. Combined with techniques to date the proxies, the paleoclimate records are used to determine the past states of Earth's atmosphere.

↑ Return to Menu

Borehole in the context of Well

A well is an excavation or structure created on the earth by digging, driving, or drilling to access liquid resources, usually water. The oldest and most common kind of well is a water well, to access groundwater in underground aquifers. The well water is drawn up by a pump, or using containers, such as buckets that are raised mechanically or by hand. Water can also be injected back into the aquifer through the well. Wells were first constructed at least eight thousand years ago and historically vary in construction from a sediment of a dry watercourse to the qanats of Iran, and the stepwells and sakiehs of India. Placing a lining in the well shaft helps create stability, and linings of wood or wickerwork date back at least as far as the Iron Age.

Wells have traditionally been sunk by hand digging, as is still the case in rural areas of the developing world. These wells are inexpensive and low-tech as they use mostly manual labour, and the structure can be lined with brick or stone as the excavation proceeds. A more modern method called caissoning uses pre-cast reinforced concrete well rings that are lowered into the hole. Driven wells can be created in unconsolidated material with a well hole structure, which consists of a hardened drive point and a screen of perforated pipe, after which a pump is installed to collect the water. Deeper wells can be excavated by hand drilling methods or machine drilling, using a bit in a borehole. Drilled wells are usually cased with a factory-made pipe composed of steel or plastic. Drilled wells can access water at much greater depths than dug wells.

↑ Return to Menu

Borehole in the context of Science and technology of the Han dynasty

Many significant developments in the history of science and technology in China took place during the Han dynasty (202 BCE – 220 CE).

The Han period saw great innovations in metallurgy. Following the inventions of the blast furnace and cupola furnace during the Zhou dynasty (c. 1046 – 256 BCE) to make pig iron and cast iron respectively, the Han period saw the development of steel and wrought iron by use of the finery forge and puddling process. With the drilling of deep boreholes into the earth, the Chinese used not only derricks to lift brine up to the surface to be boiled into salt, but also set up bamboo-crafted pipeline transport systems which brought natural gas as fuel to the furnaces.

↑ Return to Menu

Borehole in the context of Rainwater harvesting

Rainwater harvesting (RWH) is the collection and storage of rainwater, rather than allowing it to run off. Rainwater is collected from a roof-like surface and redirected to a tank, cistern, deep pit (well, shaft, or borehole), aquifer, or a reservoir with percolation, so that it seeps down and restores the ground water. Rainwater harvesting differs from stormwater harvesting as the runoff is typically collected from roofs and other area surfaces for storage and subsequent reuse. Its uses include watering gardens, livestock, irrigation, domestic use with proper treatment, and domestic heating. The harvested water can also be used for long-term storage or groundwater recharge.

Rainwater harvesting is one of the simplest and oldest methods of self-supply of water for households, having been used in South Asia and other countries for many thousands of years. Civilizations such as the Romans developed extensive water collection systems, including aqueducts and rooftop channels, which laid the groundwork for many of the modern gutter-based systems still in use today. Installations can be designed for different scales, including households, neighborhoods, and communities, and can also serve institutions such as schools, hospitals, and other public facilities.

↑ Return to Menu