Biomass (energy) in the context of "Biogasoline"

Play Trivia Questions online!

or

Skip to study material about Biomass (energy) in the context of "Biogasoline"

Ad spacer

⭐ Core Definition: Biomass (energy)

In the context of energy production, biomass is matter from recently living (but now dead) organisms which is used for bioenergy production. Examples include wood, wood residues, energy crops, agricultural residues including straw, and organic waste from industry and households. Wood and wood residues is the largest biomass energy source today. Wood can be used as a fuel directly or processed into pellet fuel or other forms of fuels. Other plants can also be used as fuel, for instance maize, switchgrass, miscanthus and bamboo. The main waste feedstocks are wood waste, agricultural waste, municipal solid waste, and manufacturing waste. Upgrading raw biomass to higher grade fuels can be achieved by different methods, broadly classified as thermal, chemical, or biochemical.

The climate impact of bioenergy varies considerably depending on where biomass feedstocks come from and how they are grown. For example, burning wood for energy releases carbon dioxide. Those emissions can be significantly offset if the trees that were harvested are replaced by new trees in a well-managed forest, as the new trees will remove carbon dioxide from the air as they grow. However, the farming of biomass feedstocks can reduce biodiversity, degrade soils and take land out of food production. It may also consume water for irrigation and fertilisers.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Biomass (energy) in the context of Biogasoline

Biogasoline is a type of synthetic gasoline produced from biomass such as algae and plants. Like traditionally petroleum-derived gasoline, biogasoline is made up of hydrocarbons with 6 (hexane) to 12 (dodecane) carbon atoms per molecule, and can be directly used in conventional internal combustion engines. However, unlike traditional gasoline, which are fractionally distilled from crude oil and thus are non-renewable fossil fuels, biogasolines are renewable biofuels made from algal materials, energy crops such as beets and sugarcane, and other cellulosic residues traditionally regarded to as agricultural waste.

Biofuels most often apply to the product of compounded biomass substance called feedstocks. Biomass is abstract in nature and used to produce gasoline that generates net-zero carbon emissions through a process called gasification. There are multi-various methods through which this fuel can be produced; however, determining the optimal gasification route through which to apply a particular feedstock or biomass relies on experimentation and trial and error.

↓ Explore More Topics
In this Dossier

Biomass (energy) in the context of Biofuel

Biofuel is a fuel that is produced over a short time span from biomass, rather than by the very slow natural processes involved in the formation of fossil fuels such as oil. Biofuel can be produced from plants or from agricultural, domestic or industrial bio waste. Biofuels are mostly used for transportation, but can also be used for heating and electricity. Biofuels (and bio energy in general) are regarded as a renewable energy source. The use of biofuel has been subject to criticism regarding the "food vs fuel" debate, varied assessments of their sustainability, and ongoing deforestation and biodiversity loss as a result of biofuel production.

In general, biofuels emit fewer greenhouse gas emissions when burned in an engine and are generally considered carbon-neutral fuels as the carbon emitted has been captured from the atmosphere by the crops used in production. However, life-cycle assessments of biofuels have shown large emissions associated with the potential land-use change required to produce additional biofuel feedstocks. The outcomes of lifecycle assessments (LCAs) for biofuels are highly situational and dependent on many factors including the type of feedstock, production routes, data variations, and methodological choices. Estimates about the climate impact from biofuels vary widely based on the methodology and exact situation examined. Therefore, the climate change mitigation potential of biofuel varies considerably: in some scenarios emission levels are comparable to fossil fuels, and in other scenarios the biofuel emissions result in negative emissions.

↑ Return to Menu

Biomass (energy) in the context of Bioenergy

Bioenergy is a type of renewable energy that is derived from plants and animal waste. The biomass that is used as input materials consists of recently living (but now dead) organisms, mainly plants. Thus, fossil fuels are not regarded as biomass under this definition. Types of biomass commonly used for bioenergy include wood, food crops such as corn, energy crops and waste from forests, yards, or farms.

Bioenergy can help with climate change mitigation but in some cases the required biomass production can increase greenhouse gas emissions or lead to local biodiversity loss. The environmental impacts of biomass production can be problematic, depending on how the biomass is produced and harvested. But it still produces CO2; so long as the energy is derived from breaking chemical bonds.

↑ Return to Menu

Biomass (energy) in the context of Solid fuel

Solid fuel refers to various forms of solid material that can be burnt to release energy, providing heat and light through the process of combustion. Solid fuels can be contrasted with liquid fuels and gaseous fuels. Common examples of solid fuels include wood, charcoal, peat, coal, hexamine fuel tablets, dry dung, wood pellets, corn, wheat, rice, rye, and other grains. Solid fuels are extensively used in rocketry as solid propellants. Solid fuels have been used throughout human history to create fire and solid fuel is still in widespread use throughout the world in the present day.

Solid fuel from biomass is regarded as a renewable energy source which can contribute to climate change mitigation efforts. Solid fuel from fossil fuels (i.e. coal) is not a renewable energy.

↑ Return to Menu

Biomass (energy) in the context of Drax Power Station

Drax power station is a large biomass power station in Drax, North Yorkshire, England. It has a 2.6 GW capacity for biomass and had a 1.29 GW capacity for coal that was retired in 2021. Its name comes from the nearby village of Drax. It is situated on the River Ouse between Selby and Goole. Its generating capacity of 3,906 megawatts (MW), which includes the shut down coal units, is the highest of any power station in the United Kingdom, providing about 6% of the United Kingdom's electricity supply.

Opened in 1974 and extended in the 1980s, the station was initially operated by the Central Electricity Generating Board. Since privatisation in 1990 ownership has changed several times, and it is operated by the Drax Group. Completed in 1986, it was the newest coal-fired power station in England until it closed in 2021. Flue gas desulphurisation equipment was fitted between 1988 and 1995. The high and low pressure turbines were replaced between 2007 and 2012.

↑ Return to Menu