Bioleaching in the context of "Biomining"

Play Trivia Questions online!

or

Skip to study material about Bioleaching in the context of "Biomining"

Ad spacer

⭐ Core Definition: Bioleaching

Bioleaching is the extraction or liberation of metals from their ores through the use of living organisms. Bioleaching is one of several applications within biohydrometallurgy and several methods are used to treat ores or concentrates containing copper, zinc, lead, arsenic, antimony, nickel, molybdenum, gold, silver, and cobalt.

Bioleaching falls into two broad categories. The first, is the use of microorganisms to oxidize refractory minerals to release valuable metals such and gold and silver. Most commonly the minerals that are the target of oxidization are pyrite and arsenopyrite.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Bioleaching in the context of Biomining

Biomining refers to any process that uses living organisms to extract metals from ores and other solid materials. Typically these processes involve prokaryotes, however fungi and plants (phytoextraction also known as phytomining) may also be used. Biomining is one of several applications within biohydrometallurgy with applications in ore refinement, precious metal recovery, and bioremediation. The largest application currently being used is the treatment of mining waste containing iron, copper, zinc, and gold allowing for salvation of any discarded minerals. It may also be useful in maximizing the yields of increasingly low grade ore deposits. Biomining has been proposed as a relatively environmentally friendly alternative and/or supplementation to traditional mining. Current methods of biomining are modified leach mining processes. These aptly named bioleaching processes most commonly includes the inoculation of extracted rock with bacteria and acidic solution, with the leachate salvaged and processed for the metals of value. Biomining has many applications outside of metal recovery, most notably is bioremediation which has already been used to clean up coastlines after oil spills. There are also many promising future applications, like space biomining, fungal bioleaching and biomining with hybrid biomaterials.

↓ Explore More Topics
In this Dossier

Bioleaching in the context of Bacteria

Bacteria are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were among the first life forms to appear on Earth, and are present in most of its habitats. Bacteria inhabit the air, soil, water, acidic hot springs, radioactive waste, and the deep biosphere of Earth's crust. Bacteria play a vital role in many stages of the nutrient cycle by recycling nutrients and the fixation of nitrogen from the atmosphere. The nutrient cycle includes the decomposition of dead bodies; bacteria are responsible for the putrefaction stage in this process. In the biological communities surrounding hydrothermal vents and cold seeps, extremophile bacteria provide the nutrients needed to sustain life by converting dissolved compounds, such as hydrogen sulphide and methane, to energy. Bacteria also live in mutualistic, commensal and parasitic relationships with plants and animals. Most bacteria have not been characterised and there are many species that cannot be grown in the laboratory. The study of bacteria is known as bacteriology, a branch of microbiology.

Like all animals, humans carry vast numbers (approximately 10 to 10) of bacteria. Most are in the gut, though there are many on the skin. Most of the bacteria in and on the body are harmless or rendered so by the protective effects of the immune system, and many are beneficial, particularly the ones in the gut. However, several species of bacteria are pathogenic and cause infectious diseases, including cholera, syphilis, anthrax, leprosy, tuberculosis, tetanus and bubonic plague. The most common fatal bacterial diseases are respiratory infections. Antibiotics are used to treat bacterial infections and are also used in farming, making antibiotic resistance a growing problem. Bacteria are important in sewage treatment and the breakdown of oil spills, the production of cheese and yogurt through fermentation, the recovery of gold, palladium, copper and other metals in the mining sector (biomining, bioleaching), as well as in biotechnology, and the manufacture of antibiotics and other chemicals.

↑ Return to Menu

Bioleaching in the context of List of purification methods in chemistry

Purification in a chemical context is the physical separation of a chemical substance of interest from foreign or contaminating substances. Pure results of a successful purification process are termed isolate. The following list of chemical purification methods should not be considered exhaustive.

  • Affinity purification purifies proteins by retaining them on a column through their affinity to antibodies, enzymes, or receptors that have been immobilised on the column.
  • Filtration is a mechanical method to separate solids from liquids or gases by passing the feed stream through a porous sheet such as a cloth or membrane, which retains the solids and allows the liquid to pass through.
  • Centrifugation is a process that uses an electric motor to spin a vessel of fluid at high speed to make heavier components settle to the bottom of the vessel.
  • Evaporation removes volatile liquids from non-volatile solutes, which cannot be done through filtration due to the small size of the substances.
  • Liquid–liquid extraction removes an impurity or recovers a desired product by dissolving the crude material in a solvent in which other components of the feed material are soluble.
  • Crystallization separates a product from a liquid feed stream, often in extremely pure form, by cooling the feed stream or adding precipitants that lower the solubility of the desired product so that it forms crystals. The pure solid crystals are then separated from the remaining liquor by filtration or centrifugation.
  • Recrystallization: In analytical and synthetic chemistry work, purchased reagents of doubtful purity may be recrystallised, e.g. dissolved in a very pure solvent, and then crystallized, and the crystals recovered, in order to improve and/or verify their purity.
  • Trituration removes highly soluble impurities from usually solid insoluble material by rinsing it with an appropriate solvent.
  • Adsorption removes a soluble impurity from a feed stream by trapping it on the surface of a solid material, such as activated carbon, that forms strong non-covalent chemical bonds with the impurity.
  • Chromatography employs continuous adsorption and desorption on a packed bed of a solid to purify multiple components of a single feed stream. In a laboratory setting, mixture of dissolved materials are typically fed using a solvent into a column packed with an appropriate adsorbent, and due to different affinities for solvent (moving phase) versus adsorbent (stationary phase) the components in the original mixture pass through the column in the moving phase at different rates, which thus allows to selectively collect desired materials out of the initial mixture.
  • Smelting produces metals from raw ore, and involves adding chemicals to the ore and heating it up to the melting point of the metal.
  • Refining is used primarily in the petroleum industry, whereby crude oil is heated and separated into stages according to the condensation points of the various elements.
  • Distillation, widely used in petroleum refining and in purification of ethanol separates volatile liquids on the basis of their relative volatilities. There are several type of distillation: simple distillation, steam distillation etc.
  • Water purification combines a number of methods to produce potable or drinking water.
  • Downstream processing refers to purification of chemicals, pharmaceuticals and food ingredients produced by fermentation or synthesized by plant and animal tissues, for example antibiotics, citric acid, vitamin E, and insulin.
  • Fractionation refers to a purification strategy in which some relatively inefficient purification method is repeatedly applied to isolate the desired substance in progressively greater purity.
  • Electrolysis refers to the breakdown of substances using an electric current. This removes impurities in a substance that an electric current is run through
  • Sublimation is the process of changing of any substance (usually on heating) from a solid to a gas (or from gas to a solid) without passing through liquid phase. In terms of purification - material is heated, often under vacuum, and the vapors of the material are then condensed back to a solid on a cooler surface. The process thus in its essence is similar to distillation, however the material which is condensed on the cooler surface then has to be removed mechanically, thus requiring different laboratory equipment.
  • Bioleaching is the extraction of metals from their ores through the use of living organisms.

Separation process

↑ Return to Menu

Bioleaching in the context of Biohydrometallurgy

Biohydrometallurgy is a technique in the world of metallurgy that utilizes biological agents (bacteria) to recover and treat metals such as copper. Modern biohydrometallurgy advances started with the bioleaching of copper more efficiently in the 1950s

↑ Return to Menu