Bilayer in the context of Model lipid bilayer


Bilayer in the context of Model lipid bilayer

Bilayer Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Bilayer in the context of "Model lipid bilayer"


⭐ Core Definition: Bilayer

A bilayer is a double layer of closely packed atoms or molecules.

The properties of bilayers are often studied in condensed matter physics, particularly in the context of semiconductor devices, where two distinct materials are united to form junctions, such as p–n junctions, Schottky junctions, etc. Layered materials, such as graphene, boron nitride, or transition metal dichalcogenides, have unique electronic properties as bilayer systems and are an active area of current research.

↓ Menu
HINT:

👉 Bilayer in the context of Model lipid bilayer

A model lipid bilayer is any bilayer assembled in vitro, as opposed to the bilayer of natural cell membranes or covering various sub-cellular structures like the nucleus. They are used to study the fundamental properties of biological membranes in a simplified and well-controlled environment, and increasingly in bottom-up synthetic biology for the construction of artificial cells. A model bilayer can be made with either synthetic or natural lipids. The simplest model systems contain only a single pure synthetic lipid. More physiologically relevant model bilayers can be made with mixtures of several synthetic or natural lipids.

There are many different types of model bilayers, each having experimental advantages and disadvantages. The first system developed was the black lipid membrane or "painted" bilayer, which allows simple electrical characterization of bilayers but is short-lived and can be difficult to work with. Supported bilayers are anchored to a solid substrate, increasing stability and allowing the use of characterization tools not possible in bulk solution. These advantages come at the cost of unwanted substrate interactions which can denature membrane proteins.

↓ Explore More Topics
In this Dossier

Bilayer in the context of Lipid bilayer

The lipid bilayer (or phospholipid bilayer) is a thin polar membrane made of two layers of lipid molecules. These membranes form a continuous barrier around all cells. The cell membranes of almost all organisms and many viruses are made of a lipid bilayer, as are the nuclear membrane surrounding the cell nucleus, and membranes of the membrane-bound organelles in the cell. The lipid bilayer is the barrier that keeps ions, proteins and other molecules where they are needed and prevents them from diffusing into areas where they should not be. Lipid bilayers are ideally suited to this role, even though they are only a few nanometers in width, because they are impermeable to most water-soluble (hydrophilic) molecules. Bilayers are particularly impermeable to ions, which allows cells to regulate salt concentrations and pH by transporting ions across their membranes using proteins called ion pumps.

Biological bilayers are usually composed of amphiphilic phospholipids that have a hydrophilic phosphate head and a hydrophobic tail consisting of two fatty acid chains. Phospholipids with certain head groups can alter the surface chemistry of a bilayer and can, for example, serve as signals as well as "anchors" for other molecules in the membranes of cells. Just like the heads, the tails of lipids can also affect membrane properties, for instance by determining the phase of the bilayer. The bilayer can adopt a solid gel phase state at lower temperatures but undergo phase transition to a fluid state at higher temperatures, and the chemical properties of the lipids' tails influence at which temperature this happens. The packing of lipids within the bilayer also affects its mechanical properties, including its resistance to stretching and bending. Many of these properties have been studied with the use of artificial "model" bilayers produced in a lab. Vesicles made by model bilayers have also been used clinically to deliver drugs.

View the full Wikipedia page for Lipid bilayer
↑ Return to Menu

Bilayer in the context of Lipid polymorphism

In biophysics and colloidal chemistry, polymorphism is the ability of lipids to aggregate in a variety of ways, giving rise to structures of different shapes, known as "phases". This can be in the form of spheres of lipid molecules (micelles), pairs of layers that face one another (lamellar phase, observed in biological systems as a lipid bilayer), a tubular arrangement (hexagonal), or various cubic phases (Fd3m, Im3m, Ia3m, Pn3m, and Pm3m being those discovered so far). More complicated aggregations have also been observed, such as rhombohedral, tetragonal and orthorhombic phases.

It forms an important part of current academic research in the fields of membrane biophysics (polymorphism), biochemistry (biological impact) and organic chemistry (synthesis).

View the full Wikipedia page for Lipid polymorphism
↑ Return to Menu

Bilayer in the context of Lamellar phase

Lamellar phase refers generally to packing of polar-headed, long chain, nonpolar-tailed molecules (amphiphiles) in an environment of bulk polar liquid, as sheets of bilayers separated by bulk liquid. In biophysics, polar lipids (mostly, phospholipids, and rarely, glycolipids) pack as a liquid crystalline bilayer, with hydrophobic fatty acyl long chains directed inwardly and polar headgroups of lipids aligned on the outside in contact with water, as a 2-dimensional flat sheet surface. Under transmission electron microscopy (TEM), after staining with polar headgroup reactive chemical osmium tetroxide, lamellar lipid phase appears as two thin parallel dark staining lines/sheets, constituted by aligned polar headgroups of lipids. 'Sandwiched' between these two parallel lines, there exists one thicker line/sheet of non-staining closely packed layer of long lipid fatty acyl chains. This TEM-appearance became famous as Robertson's unit membrane - the basis of all biological membranes, and structure of lipid bilayer in unilamellar liposomes. In multilamellar liposomes, many such lipid bilayer sheets are layered concentrically with water layers in between.

In lamellar lipid bilayers, polar headgroups of lipids align together at the interface of water and hydrophobic fatty-acid acyl chains align parallel to one another 'hiding away' from water. The lipid head groups are somewhat more 'tightly' packed than relatively 'fluid' hydrocarbon fatty acyl long chains. The lamellar lipid bilayer organization, thus reveals a 'flexibility gradient' of increasing freedom of motions from near the head-groups towards the terminal fatty-acyl chain methyl groups. Existence of such a dynamic organization of lamellar phase in liposomes as well as biological membranes can be confirmed by spin label electron paramagnetic resonance and high resolution nuclear magnetic resonance spectroscopy studies of biological membranes and liposomes.

View the full Wikipedia page for Lamellar phase
↑ Return to Menu