In vitro in the context of Model lipid bilayer


In vitro in the context of Model lipid bilayer

In vitro Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about In vitro in the context of "Model lipid bilayer"


⭐ Core Definition: In vitro

In vitro (meaning in glass, or in the glass) studies are performed with cells or biological molecules outside their normal biological context. Colloquially called "test-tube experiments", these studies in biology and its subdisciplines are traditionally done in labware such as test tubes, flasks, Petri dishes, and microtiter plates. Studies conducted using components of an organism that have been isolated from their usual biological surroundings permit a more detailed or more convenient analysis than can be done with whole organisms; however, results obtained from in vitro experiments may not fully or accurately predict the effects on a whole organism. In contrast to in vitro experiments, in vivo studies are those conducted in living organisms, including humans, known as clinical trials, and whole plants.

↓ Menu
HINT:

In this Dossier

In vitro in the context of Stem cell

In multicellular organisms, stem cells are undifferentiated or partially differentiated cells that can change into various types of cells and proliferate indefinitely to produce more of the same stem cell. They are the earliest type of cell in a cell lineage. They are found in both embryonic and adult organisms, but they have slightly different properties in each. They are usually distinguished from progenitor cells, which cannot divide indefinitely, and precursor or blast cells, which are usually committed to differentiating into one cell type.

In mammals, roughly 50 to 150 cells make up the inner cell mass during the blastocyst stage of embryonic development, around days 5–14. These have stem-cell capability. In vivo, they eventually differentiate into all of the body's cell types (making them pluripotent). This process starts with the differentiation into the three germ layers – the ectoderm, mesoderm and endoderm – at the gastrulation stage. However, when they are isolated and cultured in vitro, they can be kept in the stem-cell stage and are known as embryonic stem cells (ESCs).

View the full Wikipedia page for Stem cell
↑ Return to Menu

In vitro in the context of Immunology

Immunology is a branch of biology and medicine that covers the study of immune systems in all organisms.

Immunology charts, measures, and contextualizes the physiological functioning of the immune system in states of both health and diseases; malfunctions of the immune system in immunological disorders (such as autoimmune diseases, hypersensitivities, immune deficiency, and transplant rejection); and the physical, chemical, and physiological characteristics of the components of the immune system in vitro, in situ, and in vivo. Immunology has applications in numerous disciplines of medicine, particularly in the fields of organ transplantation, oncology, rheumatology, virology, bacteriology, parasitology, psychiatry, and dermatology.

View the full Wikipedia page for Immunology
↑ Return to Menu

In vitro in the context of Plant tissue culture

Plant tissue culture is a collection of techniques used to maintain or grow plant cells, tissues, or organs under sterile conditions on a nutrient culture medium of known composition. It is widely used to produce clones of a plant in a method known as micropropagation. Different techniques in plant tissue culture may offer certain advantages over traditional methods of propagation, including:

Plant tissue culture relies on the fact that many plant parts have the ability to regenerate into a whole plant (cells of those regenerative plant parts are called totipotent cells which can differentiate into various specialized cells). Single cells, plant cells without cell walls (protoplasts), pieces of leaves, stems or roots can often be used to generate a new plant on culture media given the required nutrients and plant hormones.

View the full Wikipedia page for Plant tissue culture
↑ Return to Menu

In vitro in the context of Antioxidant

Antioxidants are compounds that inhibit oxidation, a chemical reaction that can produce free radicals. Autoxidation leads to degradation of organic compounds, including living matter. Antioxidants are frequently added to industrial products, such as polymers, fuels, and lubricants, to extend their usable lifetimes. Foods are also treated with antioxidants to prevent spoilage, in particular the rancidification of oils and fats. In cells, antioxidants such as glutathione, mycothiol, or bacillithiol, and enzyme systems like superoxide dismutase, inhibit damage from oxidative stress.

Dietary antioxidants are vitamins A, C, and E, but the term has also been applied to various compounds that exhibit antioxidant properties in vitro, having little evidence for antioxidant properties in vivo. Dietary supplements marketed as antioxidants have not been shown to maintain health or prevent disease in humans.

View the full Wikipedia page for Antioxidant
↑ Return to Menu

In vitro in the context of In silico

In biology and other experimental sciences, an in silico experiment is one performed on a computer or via computer simulation software. The phrase is pseudo-Latin for 'in silicon' (correct Latin: in silicio), referring to silicon in computer chips. It was coined in 1987 as an allusion to the Latin phrases in vivo, in vitro, and in situ, which are commonly used in biology (especially systems biology). The latter phrases refer, respectively, to experiments done in living organisms, outside living organisms, and where they are found in nature.

View the full Wikipedia page for In silico
↑ Return to Menu

In vitro in the context of Lithocholic acid

Lithocholic acid, also known as 3α-hydroxy-5β-cholan-24-oic acid or LCA, is a bile acid that acts as a detergent to solubilize fats for absorption. Bacterial action in the colon produces LCA from chenodeoxycholic acid by reduction of the hydroxyl functional group at carbon-7 in the "B" ring of the steroid framework.

It has been implicated in human and experimental animal carcinogenesis. Preliminary in vitro research suggests that LCA selectively kills neuroblastoma cells, while sparing normal neuronal cells and is cytotoxic to numerous other malignant cell types at physiologically relevant concentrations.

View the full Wikipedia page for Lithocholic acid
↑ Return to Menu

In vitro in the context of Monostroma

Monostroma is a genus of marine green algae (seaweed) in the family Monostromataceae. As the name suggests, algae of this genus are monostromatic (single cell layered). Monostroma kuroshiense, an algae of this genus, is commercially cultivated in East Asia and South America for the edible product "hitoegusa-nori" or "hirohano-hitoegusa nori", popular sushi wraps. Monostroma oligosaccharides with degree of polymerization 6 prepared by agarase digestion from Monostroma nitidum polysaccharides have been shown to be an effective prophylactic agent during in vitro and in vivo tests against Japanese encephalitis viral infection. The sulfated oligosaccharides from Monostroma seem to be promising candidates for further development as antiviral agents. The genus Monostroma is the most widely cultivated genus among green seaweeds.

View the full Wikipedia page for Monostroma
↑ Return to Menu

In vitro in the context of Hemolytic

Hemolysis or haemolysis (/hˈmɒlɪsɪs/), also known by several other names, is the rupturing (lysis) of red blood cells (erythrocytes) and the release of their contents (cytoplasm) into surrounding fluid (e.g. blood plasma). Hemolysis may occur in vivo or in vitro.

One cause of hemolysis is the action of hemolysins, toxins that are produced by certain pathogenic bacteria or fungi. Another cause is intense physical exercise. Hemolysins damage the red blood cell's cytoplasmic membrane, causing lysis and eventually cell death.

View the full Wikipedia page for Hemolytic
↑ Return to Menu

In vitro in the context of Immunogenicity

Immunogenicity is the ability of a foreign substance, such as an antigen, to provoke an immune response in the body of a human or other animal. It may be wanted or unwanted:

  • Wanted immunogenicity typically relates to vaccines, where the injection of an antigen (the vaccine) provokes an immune response against the pathogen, protecting the organism from future exposure. Immunogenicity is a central aspect of vaccine development.
  • Unwanted immunogenicity is an immune response by an organism against a therapeutic antigen. This reaction leads to production of anti-drug-antibodies (ADAs), inactivating the therapeutic effects of the treatment and potentially inducing adverse effects.

A challenge in biotherapy is predicting the immunogenic potential of novel protein therapeutics. For example, immunogenicity data from high-income countries are not always transferable to low-income and middle-income countries. Another challenge is considering how the immunogenicity of vaccines changes with age. Therefore, as stated by the World Health Organization, immunogenicity should be investigated in a target population since animal testing and in vitro models cannot precisely predict immune response in humans.

View the full Wikipedia page for Immunogenicity
↑ Return to Menu

In vitro in the context of Organ culture

Organ culture is the cultivation of either whole organs or parts of organs in vitro. It is a development from tissue culture methods of research, as the use of the actual in vitro organ itself allows for more accurate modelling of the functions of an organ in various states and conditions.

A key objective of organ culture is to maintain the architecture of the tissue and direct it towards normal development. In this technique, it is essential that the tissue is never disrupted or damaged. It thus requires careful handling. The media used for a growing organ culture are generally the same as those used for tissue culture. The techniques for organ culture can be classified into (i) those employing a solid medium and (ii) those employing liquid medium.

View the full Wikipedia page for Organ culture
↑ Return to Menu

In vitro in the context of Biocompatibility

Biocompatibility is related to the behavior of biomaterials in various contexts. The term refers to the ability of a material to perform with an appropriate host response in a specific situation. The ambiguity of the term reflects the ongoing development of insights into how biomaterials interact with the human body and eventually how those interactions determine the clinical success of a medical device (such as pacemaker, hip replacement or stent). Modern medical devices and prostheses are often made of more than one material so it might not always be sufficient to talk about the biocompatibility of a specific material.

Since the immune response and repair functions in the body are so complicated it is not adequate to describe the biocompatibility of a single material in relation to a single cell type or tissue. Sometimes one hears of biocompatibility testing that is a large battery of in vitro test that is used in accordance with ISO 10993 (or other similar standards) to determine if a certain material (or rather biomedical product) is biocompatible. These tests do not determine the biocompatibility of a material, but they constitute an important step towards the animal testing and finally clinical trials that will determine the biocompatibility of the material in a given application, and thus medical devices such as implants or drug delivery devices. Research results have concluded that during performing in vitro cytotoxicity testing of biomaterials, "the authors should carefully specify the conditions of the test and comparison of different studies should be carried out with caution".

View the full Wikipedia page for Biocompatibility
↑ Return to Menu

In vitro in the context of Ex vivo

Ex vivo (Latin for 'out of the living') refers to biological studies involving tissues, organs, or cells maintained outside their native organism under controlled laboratory conditions. By carefully managing factors such as temperature, oxygenation, nutrient delivery, and perfusing a nutrient solution through the tissue's vasculature, researchers sustain function long enough to conduct experiments that would be difficult or unethical in a living body. Ex vivo models occupy a middle ground between in vitro (lit.'in the glass') models, which typically use isolated cells, and in vivo (lit.'in the living') studies conducted inside living organisms.

Ex vivo platforms support pharmacologic screening, toxicology testing, transplant evaluation, developmental biology, and investigations of disease-mechanism research across medicine and biology, from cardiology and neuroscience to dermatology and orthopedics. Because they often use human tissues obtained from clinical procedures or biobanks, they can reduce reliance on live-animal experimentation; their utility, however, is limited by finite viability, incomplete systemic integration, and post-mortem biochemical changes that accumulate over time. The earliest perfusion studies were conducted in the mid-19th century, and subsequent advances in sterilization, imaging, and microfluidics have facilitated broader adoption into the 20th and 21st centuries. Regulatory oversight depends on specimen origin: human ex vivo research is subject to informed consent, whereas animal-derived models fall under institutional animal care guidelines.

View the full Wikipedia page for Ex vivo
↑ Return to Menu

In vitro in the context of Protocell

A protocell (or protobiont) is a self-organized, endogenously ordered, spherical collection of lipids proposed as a rudimentary precursor to cells during the origin of life. A central question in evolution is how simple protocells first arose and how their progeny could diversify, thus enabling the accumulation of novel biological emergences over time (i.e. biological evolution). Although a functional protocell has not yet been achieved in a laboratory setting, the goal to understand the process appears well within reach.

A protocell is a pre-cell in abiogenesis, and was a contained system consisting of simple biologically relevant molecules like ribozymes, and encapsulated in a simple membrane structure – isolating the entity from the environment and other individuals – thought to consist of simple fatty acids, mineral structures, or rock-pore structures.

View the full Wikipedia page for Protocell
↑ Return to Menu

In vitro in the context of In vitro fertilisation

In vitro fertilisation (IVF) is a process of fertilisation in which an egg is combined with sperm in vitro ("in glass"). The process involves monitoring and stimulating the ovulatory process, then removing an ovum or ova (egg or eggs) from the ovaries and enabling sperm to fertilise them in a culture medium in a laboratory. After a fertilised egg (zygote) undergoes embryo culture for 2–6 days, it is transferred by catheter into the uterus, with the intention of establishing a successful pregnancy.

IVF is a type of assisted reproductive technology (ART) used to treat infertility, enable gestational surrogacy, and, in combination with pre-implantation genetic testing, avoid the transmission of abnormal genetic conditions. When a fertilised egg from egg and sperm donors implants in the uterus of a genetically unrelated surrogate, the resulting child is also genetically unrelated to the surrogate. Some countries have banned or otherwise regulated the availability of IVF treatment, giving rise to fertility tourism. Financial cost and age may also restrict the availability of IVF as a means of carrying a healthy pregnancy to term.

View the full Wikipedia page for In vitro fertilisation
↑ Return to Menu

In vitro in the context of Acrosome

The acrosome is an organelle that develops over the anterior (front) half of the head in the spermatozoa (sperm cells) of humans and many other animals. It is a cap-like structure derived from the Golgi apparatus. In placental mammals, the acrosome contains degradative enzymes (including hyaluronidase and acrosin). These enzymes break down the outer membrane of the ovum, called the zona pellucida, allowing the haploid nucleus in the sperm cell to join with the haploid nucleus in the ovum.This shedding of the acrosome, known as the acrosome reaction, can be stimulated in vitro by substances that a sperm cell may encounter naturally, such as progesterone or follicular fluid, as well as the more commonly used calcium ionophore A23187. This can be done to serve as a positive control when assessing the acrosome reaction of a sperm sample by flow cytometry or fluorescence microscopy. This is usually done after staining with a fluoresceinated lectin such as FITC-PNA, FITC-PSA, FITC-ConA, or fluoresceinated antibody such as FITC-CD46.

In the case of globozoospermia (sperm with round heads), the Golgi apparatus is not transformed into the acrosome, causing male infertility.

View the full Wikipedia page for Acrosome
↑ Return to Menu

In vitro in the context of Hemagglutinin

The term hemagglutinin (alternatively spelt haemagglutinin, from the Greek haima, 'blood' + Latin gluten, 'glue') refers to any protein that can cause red blood cells (erythrocytes) to clump together ("agglutinate") in vitro. They do this by binding to the sugar residues on a red blood cell; when a single hemagglutinin molecule binds sugars from multiple red blood cells, it "glues" these cells together. As a result, they are carbohydrate-binding proteins (lectins). The ability to bind red blood cell sugars have independently appeared several times, and as a result hemaglutinins do not all bind using the same mechanism. The ability to bind red blood sugars is also not necessarily related to the in vivo function of the protein.

The term hemagglutinin is most commonly applied to plant and viral lectins. Natural proteins that clump together red blood cells were known since the turn of the 19th century. Virologist George K. Hirst is also credited for "discovering agglutination and hemagglutinin" in 1941. Alfred Gottschalk proved in 1957 that hemagglutinins bind a virus to a host cell by attaching to sialic acids on carbohydrate side chains of cell-membrane glycoproteins and glycolipids.

View the full Wikipedia page for Hemagglutinin
↑ Return to Menu

In vitro in the context of Bioactive compounds

A bioactive compound is a compound that has an effect on a living organism, tissue or cell, usually demonstrated by basic research in vitro or in vivo in the laboratory. While dietary nutrients are essential to life, bioactive compounds have not been proved to be essential – as the body can function without them – or because their actions are obscured by nutrients fulfilling the function.

Bioactive compounds lack sufficient evidence of effect or safety, and consequently they are usually unregulated and may be sold as dietary supplements.

View the full Wikipedia page for Bioactive compounds
↑ Return to Menu