Haploid in the context of Acrosome


Haploid in the context of Acrosome

Haploid Study page number 1 of 4

Play TriviaQuestions Online!

or

Skip to study material about Haploid in the context of "Acrosome"


⭐ Core Definition: Haploid

Ploidy (/ˈplɔɪdi/) is the number of complete sets of chromosomes in a cell, and hence the number of possible alleles for autosomal and pseudoautosomal genes. Here sets of chromosomes refers to the number of maternal and paternal chromosome copies, respectively, in each homologous chromosome pair—the form in which chromosomes naturally exist. Somatic cells, tissues, and individual organisms can be described according to the number of sets of chromosomes present (the "ploidy level"): monoploid (1 set), diploid (2 sets), triploid (3 sets), tetraploid (4 sets), pentaploid (5 sets), hexaploid (6 sets), heptaploid or septaploid (7 sets), etc. The generic term polyploid is often used to describe cells with three or more sets of chromosomes.

Virtually all sexually reproducing organisms are made up of somatic cells that are diploid or greater, but ploidy level may vary widely between different organisms, between different tissues within the same organism, and at different stages in an organism's life cycle. Half of all known plant genera contain polyploid species, and about two-thirds of all grasses are polyploid. Many animals are uniformly diploid, though polyploidy is common in invertebrates, reptiles, and amphibians. In some species, ploidy varies between individuals of the same species (as in the social insects), and in others entire tissues and organ systems may be polyploid despite the rest of the body being diploid (as in the mammalian liver). For many organisms, especially plants and fungi, changes in ploidy level between generations are major drivers of speciation. In mammals and birds, ploidy changes are typically fatal. There is, however, evidence of polyploidy in organisms now considered to be diploid, suggesting that polyploidy has contributed to evolutionary diversification in plants and animals through successive rounds of polyploidization and rediploidization.

↓ Menu
HINT:

In this Dossier

Haploid in the context of Cell (biology)

The cell is the basic structural and functional unit of all forms of life or organisms. The term comes from the Latin word cellula meaning 'small room'. A biological cell basically consists of a semipermeable cell membrane enclosing cytoplasm that contains genetic material. Most cells are only visible under a microscope. Except for highly-differentiated cell types (examples include red blood cells and gametes) most cells are capable of replication, and protein synthesis. Some types of cell are motile. Cells emerged on Earth about four billion years ago.

All organisms are grouped into prokaryotes, and eukaryotes. Prokaryotes are single-celled, and include archaea, and bacteria. Eukaryotes can be single-celled or multicellular, and include protists, plants, animals, most types of fungi, and some species of algae. All multicellular organisms are made up of many different types of cell. The diploid cells that make up the body of a plant or animal are known as somatic cells, and in animals excludes the haploid gametes.

View the full Wikipedia page for Cell (biology)
↑ Return to Menu

Haploid in the context of Moss

Mosses are small, non-vascular flowerless plants in the taxonomic division Bryophyta (/brˈɒfətə/, /ˌbr.əˈftə/) sensu stricto. Bryophyta (sensu lato, Schimp. 1879) may also refer to the parent group bryophytes, which comprise liverworts, mosses, and hornworts. Mosses typically form dense green clumps or mats, often in damp or shady locations. The individual plants are usually composed of simple leaves that are generally only one cell thick, attached to a stem that may be branched or unbranched and has only a limited role in conducting water and nutrients. Although some species have conducting tissues, these are generally poorly developed and structurally different from similar tissue found in vascular plants. Mosses do not have seeds and after fertilisation develop sporophytes with unbranched stalks topped with single capsules containing spores. They are typically 0.2–10 cm (0.1–3.9 in) tall, though some species are much larger. Dawsonia superba, the tallest moss in the world, can grow to 60 cm (24 in) in height. There are approximately 12,000 species.

Mosses are commonly confused with liverworts, hornworts and lichens. Although often described as non-vascular plants, many mosses have advanced vascular systems. Like liverworts and hornworts, the haploid gametophyte generation of mosses is the dominant phase of the life cycle. This contrasts with the pattern in all vascular plants (seed plants and pteridophytes), where the diploid sporophyte generation is dominant. Lichens may superficially resemble mosses, and sometimes have common names that include the word "moss" (e.g., "reindeer moss" or "Iceland moss"), but they are fungal symbioses and not related to mosses.

View the full Wikipedia page for Moss
↑ Return to Menu

Haploid in the context of Conception (biology)

Fertilisation or fertilization (see spelling differences), also known as generative fertilisation, syngamy and impregnation, is the fusion of gametes to give rise to a zygote and initiate its development into a new individual organism or offspring. While processes such as insemination or pollination, which happen before the fusion of gametes, are also sometimes informally referred to as fertilisation, these are technically separate processes. The cycle of fertilisation and development of new individuals is called sexual reproduction. During double fertilisation in angiosperms, the haploid male gamete combines with two haploid polar nuclei to form a triploid primary endosperm nucleus by the process of vegetative fertilisation.

View the full Wikipedia page for Conception (biology)
↑ Return to Menu

Haploid in the context of Sexual reproduction

Sexual reproduction is a type of reproduction that involves a complex life cycle in which a gamete (haploid reproductive cells, such as a sperm or egg cell) with a single set of chromosomes combines with another gamete to produce a zygote that develops into an organism composed of cells with two sets of chromosomes (diploid). This is typical in animals, though the number of chromosome sets and how that number changes in sexual reproduction varies, especially among plants, fungi, and other eukaryotes.

In placental mammals, sperm cells exit the penis through the male urethra and enter the vagina during copulation, while egg cells enter the uterus through the oviduct. Other vertebrates of both sexes possess a cloaca for the release of sperm or egg cells.

View the full Wikipedia page for Sexual reproduction
↑ Return to Menu

Haploid in the context of Gymnosperm

The gymnosperms (/ˈɪmnəˌspɜːrmz, -n-/ nə-spurmz, -⁠noh-; from Ancient Greek γυμνός (gumnós), meaning "naked", and σπέρμα (spérma), meaning "seed", and thus, "naked seed") are a group of woody, perennial seed-producing plants, typically lacking the protective outer covering which surrounds the seeds in flowering plants, that include conifers, cycads, Ginkgo, and gnetophytes, forming the clade Gymnospermae. The name is based on the unenclosed condition of their seeds (called ovules in their unfertilized state). The non-encased condition of their seeds contrasts with the seeds and ovules of flowering plants (angiosperms), which are enclosed within an ovary. Gymnosperm seeds develop either on the surface of scales or leaves, which are often modified to form cones, or on their own as in yew, Torreya, and Ginkgo.

The life cycle of a gymnosperm involves alternation of generations, with a dominant diploid sporophyte phase, and a reduced haploid gametophyte phase, which is dependent on the sporophytic phase. The term "gymnosperm" is often used in paleobotany to refer to (the paraphyletic group of) all non-angiosperm seed plants. In that case, to specify the modern monophyletic group of gymnosperms, the term Acrogymnospermae is sometimes used.

View the full Wikipedia page for Gymnosperm
↑ Return to Menu

Haploid in the context of Meiosis

Meiosis (/mˈsɪs/ ) is a special type of cell division of germ cells in sexually-reproducing organisms that produces the gametes, the sperm or egg cells. It involves two rounds of division that ultimately result in four cells, each with only one copy of each chromosome (haploid). Additionally, prior to the division, genetic material from the paternal and maternal copies of each chromosome is crossed over, creating new combinations of code on each chromosome. Later on, during fertilisation, the haploid cells produced by meiosis from a male and a female will fuse to create a zygote, a cell with two copies of each chromosome.

Errors in meiosis resulting in aneuploidy (an abnormal number of chromosomes) are the leading known cause of miscarriage and the most frequent genetic cause of developmental disabilities.

View the full Wikipedia page for Meiosis
↑ Return to Menu

Haploid in the context of Mutant

In biology, and especially in genetics, a mutant is an organism or a new genetic character arising or resulting from an instance of mutation, which is generally an alteration of the DNA sequence of the genome or chromosome of an organism. It is a characteristic that would not be observed naturally in a specimen. The term mutant is also applied to a virus with an alteration in its nucleotide sequence whose genome is in the nuclear genome. The natural occurrence of genetic mutations is integral to the process of evolution. The study of mutants is an integral part of biology; by understanding the effect that a mutation in a gene has, it is possible to establish the normal function of that gene.

View the full Wikipedia page for Mutant
↑ Return to Menu

Haploid in the context of Sporangium

A sporangium (from Late Latin, from Ancient Greek σπορά (sporá) 'seed' and ἀγγεῖον (angeîon) 'vessel'; pl.: sporangia) is an enclosure in which spores are formed. It can be composed of a single cell or can be multicellular. Virtually all plants, fungi, and many other groups form sporangia at some point in their life cycle. Sporangia can produce spores by mitosis, but in land plants and many fungi, sporangia produce genetically distinct haploid spores by meiosis.

View the full Wikipedia page for Sporangium
↑ Return to Menu

Haploid in the context of Gametophyte

A gametophyte (/ɡəˈmtəft/) is one of the two alternating multicellular phases in the life cycles of plants and algae. It is a haploid multicellular organism that develops from a haploid spore, that has one set of chromosomes. The gametophyte is the sexual phase in the life cycle of plants and algae. It develops sex organs that produce gametes, haploid sex cells that participate in fertilization to form a diploid zygote, which has a double set of chromosomes. Cell division of the zygote results in a new diploid multicellular organism, the second stage in the life cycle known as the sporophyte. The sporophyte can produce haploid spores by meiosis that on germination produce a new generation of gametophytes.

View the full Wikipedia page for Gametophyte
↑ Return to Menu

Haploid in the context of Gonad

A gonad, sex gland, or reproductive gland is a mixed gland and sex organ that produces the gametes and sex hormones of an organism. Female reproductive cells are egg cells, and male reproductive cells are sperm. The male gonad, the testicle, produces sperm in the form of spermatozoa. The female gonad, the ovary, produces egg cells. Both of these gametes are haploid cells. Some hermaphroditic animals (and some humans— see Ovotesticular syndrome) have a type of gonad called an ovotestis.

View the full Wikipedia page for Gonad
↑ Return to Menu

Haploid in the context of Double fertilisation

Double fertilization or double fertilisation (see spelling differences) is a complex fertilization mechanism of angiosperms. This process involves the fusion of a female gametophyte or megagametophyte, also called the embryonic sac, with two male gametes (sperm). It begins when a pollen grain adheres to the stigmatic surface of the carpel, the female reproductive structure of angiosperm flowers. The pollen grain begins to germinate (unless a type of self-incompatibility that acts in the stigma occurs in that particular species and is activated), forming a pollen tube that penetrates and extends down through the style toward the ovary as it follows chemical signals released by the egg. The tip of the pollen tube then enters the ovary by penetrating the micropyle opening in the ovule, and releases two sperm into the embryonic sac (megagametophyte).

The mature embryonic sac of an unfertilized ovule is 7-cellular and 8-nucleate. It is arranged in the form of 3+1+3 (from top to bottom) i.e. 3 antipodal cells, 1 central cell (binucleate), 2 synergids & 1 egg cell. One sperm fertilizes the egg cell and the other sperm fuses with the two polar nuclei of the large central cell of the megagametophyte. The haploid sperm and haploid egg fuse to form a diploid zygote, the process being called syngamy, while the other sperm and the diploid central cell fuse to form a triploid primary endosperm cell (triple fusion). Some plants may form polyploid nuclei. The large cell of the gametophyte will then develop into the endosperm, a nutrient-rich tissue which nourishes the developing embryo. The ovary, surrounding the ovules, develops into the fruit, which protects the seeds and may function to disperse them.

View the full Wikipedia page for Double fertilisation
↑ Return to Menu

Haploid in the context of Triploid

Polyploidy is a condition in which the cells of an organism have more than two paired sets of (homologous) chromosomes. Most species whose cells have nuclei (eukaryotes) are diploid, meaning they have two complete sets of chromosomes, one from each of two parents; each set contains the same number of chromosomes, and the chromosomes are joined in pairs of homologous chromosomes. However, some organisms are polyploid. Polyploidy is especially common in plants. Most eukaryotes have diploid somatic cells, but produce haploid gametes (eggs and sperm) by meiosis. A monoploid has only one set of chromosomes, and the term is usually only applied to cells or organisms that are normally diploid. Males of bees and other Hymenoptera, for example, are monoploid. Unlike animals, plants and multicellular algae have life cycles with two alternating multicellular generations. The gametophyte generation is haploid, and produces gametes by mitosis; the sporophyte generation is diploid and produces spores by meiosis.

Polyploidy is the result of whole-genome duplication during the evolution of species. It may occur due to abnormal cell division, either during mitosis, or more commonly from the failure of chromosomes to separate during meiosis or from the fertilization of an egg by more than one sperm. In addition, it can be induced in plants and cell cultures by some chemicals: the best known is colchicine, which can result in chromosome doubling, though its use may have other less obvious consequences as well. Oryzalin will also double the existing chromosome content.

View the full Wikipedia page for Triploid
↑ Return to Menu

Haploid in the context of Antheridia

An antheridium is a haploid structure or organ producing and containing male gametes (called antherozoids or sperm). The plural form is antheridia, and a structure containing one or more antheridia is called an androecium.

Antheridia are present in the gametophyte phase of cryptogams like bryophytes and ferns. Many algae and some fungi, for example, ascomycetes and water moulds, also have antheridia during their reproductive stages. In gymnosperms and angiosperms, the male gametophytes have been reduced to pollen grains, and in most of these, the antheridia have been reduced to a single generative cell within the pollen grain. During pollination, this generative cell divides and gives rise to sperm cells.

View the full Wikipedia page for Antheridia
↑ Return to Menu