Betelgeuse in the context of "Red supergiant"

Play Trivia Questions online!

or

Skip to study material about Betelgeuse in the context of "Red supergiant"

Ad spacer

⭐ Core Definition: Betelgeuse

Betelgeuse is a red supergiant star in the equatorial constellation of Orion. It is usually the tenth-brightest star in the night sky and, after Rigel, the second brightest in its constellation. It is a distinctly reddish, semiregular variable star whose apparent magnitude, varying between +0.0 and +1.6, with a main period near 400 days, has the widest range displayed by any first-magnitude star. Betelgeuse is the brightest star in the night sky at near-infrared wavelengths. Its Bayer designation is α Orionis, Latinised to Alpha Orionis and abbreviated Alpha Ori or α Ori.

With a radius between 640 and 764 times that of the Sun, if it were at the center of the Solar System, its surface would lie beyond the asteroid belt and it would engulf the orbits of Mercury, Venus, Earth, and Mars. Calculations of Betelgeuse's mass range from slightly under ten to a little over twenty times that of the Sun. For various reasons, its distance has been quite difficult to measure; current best estimates are of the order of 400–600 light-years from the Sun – a comparatively wide uncertainty for a relatively nearby star. Its absolute magnitude is about −6. With an age of less than 10 million years, Betelgeuse has evolved rapidly because of its large mass, and is expected to end its evolution with a supernova explosion, most likely within 100,000 years. When Betelgeuse explodes, it will shine as bright as the half-Moon for more than three months; life on Earth will be unharmed. Having been ejected from its birthplace in the Orion OB1 association – which includes the stars in Orion's Belt – this runaway star has been observed to be moving through the interstellar medium at a speed of 30 km/s, creating a bow shock over four light-years wide.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Betelgeuse in the context of Red supergiant

Red supergiants (RSGs) are stars with a supergiant luminosity class (Yerkes class I) and a stellar classification K or M. They are the largest stars in the universe in terms of volume, although they are not the most massive or luminous. Betelgeuse and Antares A are the brightest and best known red supergiants (RSGs), indeed the only first magnitude red supergiant stars.

↓ Explore More Topics
In this Dossier

Betelgeuse in the context of Orion (constellation)

Orion is a prominent set of stars visible during winter in the northern celestial hemisphere. It is one of the 88 modern constellations; it was among the 48 constellations listed by the 2nd-century AD/CE astronomer Ptolemy. It is named after a hunter in Greek mythology.

Orion is most prominent during winter evenings in the Northern Hemisphere, as are five other constellations that have stars in the Winter Hexagon asterism. Orion's two brightest stars, Rigel (β) and Betelgeuse (α), are both among the brightest stars in the night sky; both are supergiants and slightly variable. There are a further six stars brighter than magnitude 3.0, including three making the short straight line of the Orion's Belt asterism. Orion also hosts the radiant of the annual Orionids, the strongest meteor shower associated with Halley's Comet, and the Orion Nebula, one of the brightest nebulae in the sky.

↑ Return to Menu

Betelgeuse in the context of Variable star

A variable star is a star whose brightness as seen from Earth (its apparent magnitude) changes systematically with time. This variation may be caused by a change in emitted light or by something partly blocking the light, so variable stars are classified as either:

  • Intrinsic variables, whose inherent luminosity changes; for example, because the star swells and shrinks.
  • Extrinsic variables, whose apparent changes in brightness are due to changes in the amount of their light that can reach Earth; for example, because the star has an orbiting companion that sometimes eclipses it.

Depending on the type of star system, this variation can include cyclical, irregular, fluctuating, or transient behavior. Changes can occur on time scales that range from under an hour to multiple years. Many, possibly most, stars exhibit at least some oscillation in luminosity: the energy output of the Sun, for example, varies by about 0.1% over an 11-year solar cycle. At the opposite extreme, a supernova event can briefly outshine an entire galaxy. Of the 58,200 variable stars that have been catalogued as of 2023, the most common type are pulsating variables with just under 30,000, followed by eclipsing variables with over 10,000.

↑ Return to Menu

Betelgeuse in the context of Winter Hexagon

The Winter Hexagon is an asterism appearing to be in the form of a hexagon with vertices at Rigel, Aldebaran, Capella, Pollux, Procyon, and Sirius. It is mostly upon the Northern Hemisphere's celestial sphere. On most locations on Earth (except the South Island of New Zealand and the south of Chile and Argentina and further south), this asterism is visible in the evening sky at the equator from approximately December to June, and in the morning sky from July to the end of November, while in the evenings on the northern hemisphere it is less months visible between December and June, and on the southern hemisphere less months between July and November. In the tropics and southern hemisphere, this (then called "summer hexagon") can be extended with the bright star Canopus in the south.

Smaller and more regularly shaped is the Winter Triangle, an approximately equilateral triangle that shares two vertices (Sirius and Procyon) with the larger asterism. The third vertex is Betelgeuse, which lies near the center of the hexagon. These three stars are three of the ten brightest objects, as viewed from Earth, outside the Solar System. Betelgeuse is also particularly easy to locate, being a shoulder of Orion, which assists stargazers in finding the triangle. Once the triangle is located, the larger hexagon may then be found.

↑ Return to Menu

Betelgeuse in the context of J band (infrared)

In infrared astronomy, the J band refers to an atmospheric transmission window (1.1 to 1.4 μm) centred on 1.25 micrometres (in the near-infrared).

Betelgeuse is the brightest near-IR source in the sky with a J band magnitude of −2.99. The next brightest stars in the J band are Antares (−2.7), R Doradus (−2.6), Arcturus (−2.2), and Aldebaran (−2.1). In the J band Sirius is the 9th brightest star.

↑ Return to Menu

Betelgeuse in the context of Winter Triangle

The Winter Triangle is an astronomical asterism formed from three of the brightest stars in the winter sky. It is an imaginary isosceles triangle drawn on the celestial sphere, with its defining vertices at Sirius, Betelgeuse, and Procyon, the primary stars in the three constellations of Canis Major, Orion, and Canis Minor, respectively.

↑ Return to Menu

Betelgeuse in the context of Semiregular variable star

In astronomy, a semiregular variable star, a type of variable star, is a giant or supergiant of intermediate and late (cooler) spectral type. It shows considerable periodicity in its light changes, accompanied or sometimes interrupted by various irregularities. Periods lie in the range from 20 to more than 2000 days, while the shapes of the light curves may be rather different and variable with each cycle. The amplitudes may be from several hundredths to several magnitudes (usually 1-2 magnitudes in the V filter).

↑ Return to Menu