Sirius in the context of "Winter Triangle"

Play Trivia Questions online!

or

Skip to study material about Sirius in the context of "Winter Triangle"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Sirius in the context of Stellar mass

Stellar mass is a phrase that is used by astronomers to describe the mass of a star. It is usually enumerated in terms of the Sun's mass as a proportion of a solar mass (M). Hence, the bright star Sirius has around 2.02 M. A star's mass will vary over its lifetime as mass is lost with the stellar wind or ejected via pulsational behavior, or if additional mass is accreted, such as from a companion star.

↑ Return to Menu

Sirius in the context of Heliacal risings

The heliacal rising (/hɪˈl.əkəl/ hih-LY-ə-kəl) of a star or a planet occurs annually, when it becomes visible above the eastern horizon at dawn in the brief moment just before sunrise (thus becoming "the morning star"). A heliacal rising marks the time when a star or planet becomes visible for the first time again in the night sky after having set with the Sun at the western horizon in a previous sunset (its heliacal setting), having since been in the sky only during daytime, obscured by sunlight.

Historically, the most important such rising is that of Sirius, which was an important feature of the Egyptian calendar and astronomical development. The rising of the Pleiades heralded the start of the Ancient Greek sailing season, using celestial navigation, as well as the farming season (attested by Hesiod in his Works and Days). Heliacal rising is only one of several types of alignment for stars' risings and settings; mostly the risings and settings of celestial objects are organized into lists of morning and evening risings and settings. Culmination in the evening and the culmination in the morning are separated by half a year, while on the other hand risings and settings in the evenings and the mornings are only separated by a half-year at the equator, and at other latitudes set apart by different fractions of the year.

↑ Return to Menu

Sirius in the context of Polar night

Polar night is a phenomenon that occurs in the northernmost and southernmost regions of Earth when the Sun remains below the horizon for more than 24 hours. This only occurs inside the polar circles. The opposite phenomenon, polar day or midnight sun, occurs when the Sun remains above the horizon for more than 24 hours.

There are multiple ways to define twilight, the gradual transition to and from darkness when the Sun is below the horizon. "Civil" twilight occurs when the Sun is between 0 and 6 degrees below the horizon. Nearby planets like Venus and bright stars like Sirius are visible during this period. "Nautical" twilight continues until the Sun is 12 degrees below the horizon. During nautical twilight, the horizon is visible enough for navigation. "Astronomical" twilight continues until the Sun has sunk 18 degrees below the horizon. Beyond 18 degrees, refracted sunlight is no longer visible. True night is defined as the period when the sun is 18 or more degrees below either horizon.

↑ Return to Menu

Sirius in the context of Seasonal year

The seasonal year is the time between successive recurrences of a seasonal event such as the flooding of a river, the migration of a species of bird, or the flowering of a species of plant.

The need for farmers to predict seasonal events led to the development of calendars. However, the variability from year to year of seasonal events (due to climate change or just random variation) makes the seasonal year very difficult to measure. This means that calendars are based on astronomical years (which are regular enough to be easily measured) as surrogates for the seasonal year. For example, the ancient Egyptians used the heliacal rising of Sirius to predict the flooding of the Nile.

↑ Return to Menu

Sirius in the context of Solar calendar

A solar calendar is a calendar whose dates indicates the season or almost equivalently the apparent position of the Sun relative to the stars. The Gregorian calendar, widely accepted as a standard in the world, is an example of a solar calendar.The main other types of calendar are lunar calendar and lunisolar calendar, whose months correspond to cycles of Moon phases. The months of the Gregorian calendar do not correspond to cycles of the Moon phase.

The Egyptians appear to have been the first to develop a solar calendar, using as a fixed point the annual sunrise reappearance of the Dog Star—Sirius, or Sothis—in the eastern sky, which coincided with the annual flooding of the Nile River. They constructed a calendar of 365 days, consisting of 12 months of 30 days each, with 5 days added at the year’s end. The Egyptians’ failure to account for the extra fraction of a day, however, caused their calendar to drift gradually into error.

↑ Return to Menu

Sirius in the context of Eclipsing binary

A binary star or binary star system is a system of two stars that are gravitationally bound to and in orbit around each other. Binary stars in the night sky that are seen as a single object to the naked eye are often resolved as separate stars using a telescope, in which case they are called visual binaries. Many visual binaries have long orbital periods of several centuries or millennia and therefore have orbits which are uncertain or poorly known. They may also be detected by indirect techniques, such as spectroscopy (spectroscopic binaries) or astrometry (astrometric binaries). If a binary star happens to orbit in a plane along our line of sight, its components will eclipse and transit each other; these pairs are called eclipsing binaries, or, together with other binaries that change brightness as they orbit, photometric binaries.

If components in binary star systems are close enough, they can gravitationally distort each other's outer stellar atmospheres. In some cases, these close binary systems can exchange mass, which may bring their evolution to stages that single stars cannot attain. Examples of binaries are Sirius and Cygnus X-1 (Cygnus X-1 being a well-known black hole). Binary stars are also common as the nuclei of many planetary nebulae, and are the progenitors of both novae and type Ia supernovae.

↑ Return to Menu

Sirius in the context of Winter Hexagon

The Winter Hexagon is an asterism appearing to be in the form of a hexagon with vertices at Rigel, Aldebaran, Capella, Pollux, Procyon, and Sirius. It is mostly upon the Northern Hemisphere's celestial sphere. On most locations on Earth (except the South Island of New Zealand and the south of Chile and Argentina and further south), this asterism is visible in the evening sky at the equator from approximately December to June, and in the morning sky from July to the end of November, while in the evenings on the northern hemisphere it is less months visible between December and June, and on the southern hemisphere less months between July and November. In the tropics and southern hemisphere, this (then called "summer hexagon") can be extended with the bright star Canopus in the south.

Smaller and more regularly shaped is the Winter Triangle, an approximately equilateral triangle that shares two vertices (Sirius and Procyon) with the larger asterism. The third vertex is Betelgeuse, which lies near the center of the hexagon. These three stars are three of the ten brightest objects, as viewed from Earth, outside the Solar System. Betelgeuse is also particularly easy to locate, being a shoulder of Orion, which assists stargazers in finding the triangle. Once the triangle is located, the larger hexagon may then be found.

↑ Return to Menu