Variable star in the context of "Betelgeuse"

Play Trivia Questions online!

or

Skip to study material about Variable star in the context of "Betelgeuse"

Ad spacer

⭐ Core Definition: Variable star

A variable star is a star whose brightness as seen from Earth (its apparent magnitude) changes systematically with time. This variation may be caused by a change in emitted light or by something partly blocking the light, so variable stars are classified as either:

  • Intrinsic variables, whose inherent luminosity changes; for example, because the star swells and shrinks.
  • Extrinsic variables, whose apparent changes in brightness are due to changes in the amount of their light that can reach Earth; for example, because the star has an orbiting companion that sometimes eclipses it.

Depending on the type of star system, this variation can include cyclical, irregular, fluctuating, or transient behavior. Changes can occur on time scales that range from under an hour to multiple years. Many, possibly most, stars exhibit at least some oscillation in luminosity: the energy output of the Sun, for example, varies by about 0.1% over an 11-year solar cycle. At the opposite extreme, a supernova event can briefly outshine an entire galaxy. Of the 58,200 variable stars that have been catalogued as of 2023, the most common type are pulsating variables with just under 30,000, followed by eclipsing variables with over 10,000.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Variable star in the context of Observational astronomy

Observational astronomy is a division of astronomy that is concerned with recording data about the observable universe, in contrast with theoretical astronomy, which is mainly concerned with calculating the measurable implications of physical models. It is the practice and study of observing celestial objects with the use of telescopes and other astronomical instruments.

As a science, the study of astronomy is somewhat hindered in that direct experiments with the properties of the distant universe are not possible. However, this is partly compensated by the fact that astronomers have a vast number of visible examples of stellar phenomena that can be examined. This allows for observational data to be plotted on graphs, and general trends recorded. Nearby examples of specific phenomena, such as variable stars, can then be used to infer the behavior of more distant representatives. Those distant yardsticks can then be employed to measure other phenomena in that neighborhood, including the distance to a galaxy.

↑ Return to Menu

Variable star in the context of Orion (constellation)

Orion is a prominent set of stars visible during winter in the northern celestial hemisphere. It is one of the 88 modern constellations; it was among the 48 constellations listed by the 2nd-century AD/CE astronomer Ptolemy. It is named after a hunter in Greek mythology.

Orion is most prominent during winter evenings in the Northern Hemisphere, as are five other constellations that have stars in the Winter Hexagon asterism. Orion's two brightest stars, Rigel (β) and Betelgeuse (α), are both among the brightest stars in the night sky; both are supergiants and slightly variable. There are a further six stars brighter than magnitude 3.0, including three making the short straight line of the Orion's Belt asterism. Orion also hosts the radiant of the annual Orionids, the strongest meteor shower associated with Halley's Comet, and the Orion Nebula, one of the brightest nebulae in the sky.

↑ Return to Menu

Variable star in the context of T Tauri star

T Tauri stars (TTS) are a class of variable stars that are less than about ten million years old. This class is named after the prototype, T Tauri, a young star in the Taurus star-forming region. They are found near molecular clouds and identified by their optical variability and strong chromospheric lines. T Tauri stars are pre-main-sequence stars in the process of contracting to the main sequence along the Hayashi track, a luminosity–temperature relationship obeyed by infant stars of less than 3 solar masses (M) in the pre-main-sequence phase of stellar evolution. It ends when a star of 0.5 M or larger develops a radiative zone, or when a smaller star commences nuclear fusion on the main sequence.

↑ Return to Menu

Variable star in the context of BL Lacertae object

A BL Lacertae object or BL Lac object is a type of active galactic nucleus (AGN) or a galaxy with such an AGN, named after its prototype, BL Lacertae. In contrast to other types of active galactic nuclei, BL Lacs are characterized by rapid and large-amplitude flux variability and significant optical polarization. Because of these properties, the prototype of the class (BL Lac) was originally thought to be a variable star. When compared to the more luminous active nuclei (quasars) with strong emission lines, BL Lac objects have spectra dominated by a relatively featureless non-thermal emission continuum over the entire electromagnetic range. This lack of spectral lines historically hindered identification of the nature and distance of such objects.

In the unified scheme of radio-loud active galactic nuclei, the observed nuclear phenomenology of BL Lacs is interpreted as being due to the effects of the relativistic jet closely aligned to the line of sight of the observer. BL Lacs are thought to be intrinsically identical to low-power radio galaxies. These active nuclei appear to be hosted in massive elliptical galaxies. From the point of AGN classification, BL Lacs are a blazar subtype. All known BL Lacs are associated with core dominated radio sources, many of them exhibiting apparent superluminal motion.

↑ Return to Menu

Variable star in the context of Cepheid variable

A Cepheid variable (/ˈsɛfi.ɪd, ˈsfi-/) is a type of variable star that pulsates radially, varying in both diameter and temperature. It changes in brightness, with a well-defined stable period (typically 1–100 days) and amplitude. Cepheids are important cosmic benchmarks for scaling galactic and extragalactic distances; a strong direct relationship exists between a Cepheid variable's luminosity and its pulsation period.

This characteristic of classical Cepheids was discovered in 1908 by Henrietta Swan Leavitt after studying thousands of variable stars in the Magellanic Clouds. The discovery establishes the true luminosity of a Cepheid by observing its pulsation period. This in turn gives the distance to the star by comparing its known luminosity to its observed brightness, calibrated by directly observing the parallax distance to the closest Cepheids such as RS Puppis and Polaris.

↑ Return to Menu

Variable star in the context of Constellation of Andromeda

Andromeda is one of the 48 constellations listed by the 2nd-century Greco-Roman astronomer Ptolemy, and one of the 88 modern constellations. Located in the northern celestial hemisphere, it is named for Andromeda, daughter of Cassiopeia, in the Greek myth, who was chained to a rock to be eaten by the sea monster Cetus. Andromeda is most prominent during autumn evenings in the Northern Hemisphere, along with several other constellations named for characters in the Perseus myth. Because of its northern declination, Andromeda is visible only north of 40° south latitude; for observers farther south, it always lies below the horizon. It is one of the largest constellations, with an area of 722 square degrees. This is over 1,400 times the size of the full moon, 55% of the size of the largest constellation, Hydra, and over 10 times the size of the smallest constellation, Crux.

Its brightest star, Alpheratz (Alpha Andromedae), is a binary star that has also been counted as a part of Pegasus, while Gamma Andromedae (Almach) is a colorful binary and a popular target for amateur astronomers. With a variable brightness similar to Alpheratz, Mirach (Beta Andromedae) is a red giant, its color visible to the naked eye. The constellation's most obvious deep-sky object is the naked-eye Andromeda Galaxy (M31, also called the Great Galaxy of Andromeda), the closest spiral galaxy to the Milky Way and one of the brightest Messier objects. Several fainter galaxies, including M31's companions M110 and M32, as well as the more distant NGC 891, lie within Andromeda. The Blue Snowball Nebula, a planetary nebula, is visible in a telescope as a blue circular object.

↑ Return to Menu

Variable star in the context of Nu Fornacis

Nu Fornacis, Latinized from ν Fornacis, is a single, variable star in the southern constellation of Fornax. It is blue-white in hue and faintly visible to the naked eye with an apparent visual magnitude that fluctuates around 4.69. This body is located approximately 370 light years distant from the Sun based on parallax, and is drifting further away with a radial velocity of +18.5 km/s. It is a candidate member of the Pisces-Eridanus stellar stream, which suggests an age of 120 million years or less.

This object is an Ap star with a stellar classification of B9.5IIIspSi matching a late B-type giant star. The 'Si' suffix indicates an abundance anomaly of silicon. It is an Alpha Canum Venaticorum variable that ranges from magnitude 4.68 down to 4.73 with a period of 1.89 days – the same as its rotational period. It is 3.65 times as massive and 245 times as luminous as the Sun, with 3.44 times the Sun's diameter.

↑ Return to Menu

Variable star in the context of Classical Cepheid variable

Classical Cepheids are a type of Cepheid variable star. They are young, population I variable stars that exhibit regular radial pulsations with periods of a few days to a few weeks and visual amplitudes ranging from a few tenths of a magnitude up to about 2 magnitudes. Classical Cepheids are also known as Population I Cepheids, Type I Cepheids, and Delta Cepheid variables.

There exists a well-defined relationship between a classical Cepheid variable's luminosity and pulsation period, securing Cepheids as viable standard candles for establishing the galactic and extragalactic distance scales. Hubble Space Telescope (HST) observations of classical Cepheid variables have enabled firmer constraints on Hubble's law, which describes the expansion rate of the observable Universe. Classical Cepheids have also been used to clarify many characteristics of our galaxy, such as the local spiral arm structure and the Sun's distance from the galactic plane.

↑ Return to Menu