Alkali metal in the context of Hardness


Alkali metal in the context of Hardness

Alkali metal Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Alkali metal in the context of "Hardness"


⭐ Core Definition: Alkali metal

The alkali metals consist of the chemical elements lithium (Li), sodium (Na), potassium (K), rubidium (Rb), caesium (Cs), and francium (Fr). Together with hydrogen they constitute group 1, which lies in the s-block of the periodic table. All alkali metals have their outermost electron in an s-orbital: this shared electron configuration results in them having very similar characteristic properties. Indeed, the alkali metals provide the best example of group trends in properties in the periodic table, with elements exhibiting well-characterised homologous behaviour. This family of elements is also known as the lithium family after its leading element.

The alkali metals are all shiny, soft, highly reactive metals at standard temperature and pressure and readily lose their outermost electron to form cations with charge +1. They can all be cut easily with a knife due to their softness, exposing a shiny surface that tarnishes rapidly in air due to oxidation by atmospheric moisture and oxygen (and in the case of lithium, nitrogen). Because of their high reactivity, they must be stored under oil to prevent reaction with air, and are found naturally only in salts and never as the free elements. Caesium, the fifth alkali metal, is the most reactive of all the metals. All the alkali metals react with water, with the heavier alkali metals reacting more vigorously than the lighter ones.

↓ Menu
HINT:

In this Dossier

Alkali metal in the context of Potassium

Potassium is a chemical element; it has symbol K (from Neo-Latin kalium) and atomic number 19. It is a silvery white metal that is soft enough to easily cut with a knife. Potassium metal reacts rapidly with atmospheric oxygen to form flaky white potassium peroxide in only seconds of exposure. It was first isolated from potash, the ashes of plants, from which its name derives. In the periodic table, potassium is one of the alkali metals, all of which have a single valence electron in the outer electron shell, which is easily removed to create an ion with a positive charge (which combines with anions to form salts). In nature, potassium occurs only in ionic salts. Elemental potassium reacts vigorously with water, generating sufficient heat to ignite hydrogen emitted in the reaction, and burning with a lilac-colored flame. It is found dissolved in seawater (which is 0.04% potassium by weight), and occurs in many minerals such as orthoclase, a common constituent of granites and other igneous rocks.

Potassium is chemically very similar to sodium, the previous element in group 1 of the periodic table. They have a similar first ionization energy, which allows for each atom to give up its sole outer electron. It was first suggested in 1702 that they were distinct elements that combine with the same anions to make similar salts, which was demonstrated in 1807 when elemental potassium was first isolated via electrolysis. Naturally occurring potassium is composed of three isotopes, of which
K
is radioactive. Traces of
K
are found in all potassium, and it is the most common radioisotope in the human body.

View the full Wikipedia page for Potassium
↑ Return to Menu

Alkali metal in the context of Alkali metal oxide

The alkali metals react with oxygen to form several different compounds: suboxides, oxides, peroxides, sesquioxides, superoxides, and ozonides. They all react violently with water.

View the full Wikipedia page for Alkali metal oxide
↑ Return to Menu

Alkali metal in the context of Calc-alkaline magma series

The calc-alkaline magma series is one of two main subdivisions of the subalkaline magma series, the other subalkaline magma series being the tholeiitic series. A magma series is a series of compositions that describes the evolution of a mafic magma, which is high in magnesium and iron and produces basalt or gabbro, as it fractionally crystallizes to become a felsic magma, which is low in magnesium and iron and produces rhyolite or granite. Calc-alkaline rocks are rich in alkaline earths (magnesia and calcium oxide) and alkali metals and make up a major part of the crust of the continents.

The diverse rock types in the calc-alkaline series include volcanic types such as basalt, andesite, dacite, rhyolite, and also their coarser-grained intrusive equivalents (gabbro, diorite, granodiorite, and granite). They do not include silica-undersaturated, alkalic, or peralkaline rocks.

View the full Wikipedia page for Calc-alkaline magma series
↑ Return to Menu

Alkali metal in the context of Lithium

Lithium (from Ancient Greek: λίθος, líthos, 'stone') is a chemical element; it has symbol Li and atomic number 3. It is a soft, silvery-white alkali metal. Under standard conditions, it is the least dense metal and the least dense solid element. Like all alkali metals, lithium is highly reactive and flammable, and must be stored in vacuum, inert atmosphere, or inert liquid such as purified kerosene or mineral oil. It exhibits a metallic luster when pure, but quickly corrodes in air to a dull silvery gray, then black tarnish. It does not occur freely in nature, but occurs mainly as pegmatitic minerals, which were once the main source of lithium. Due to its solubility as an ion, it is present in ocean water and is commonly obtained from brines. Lithium metal is isolated electrolytically from a mixture of lithium chloride and potassium chloride.

The nucleus of the lithium atom verges on instability, since the two stable lithium isotopes found in nature have among the lowest binding energies per nucleon of all stable nuclides. Because of its relative nuclear instability, lithium is less common in the Solar System than 25 of the first 32 chemical elements even though its nuclei are very light: it is an exception to the trend that heavier nuclei are less common. For related reasons, lithium has important uses in nuclear physics. The transmutation of lithium atoms to helium in 1932 was the first fully human-made nuclear reaction, and lithium deuteride serves as a fusion fuel in staged thermonuclear weapons.

View the full Wikipedia page for Lithium
↑ Return to Menu

Alkali metal in the context of Clay mineral

Clay minerals are hydrous aluminium phyllosilicates (e.g. kaolin, Al2Si2O5(OH)4), sometimes with variable amounts of iron, magnesium, alkali metals, alkaline earths, and other cations found on or near some planetary surfaces.

Clay minerals form in the presence of water and have been important to life, and many theories of abiogenesis involve them. They are important constituents of soils, and have been useful to humans since ancient times in agriculture and manufacturing.

View the full Wikipedia page for Clay mineral
↑ Return to Menu

Alkali metal in the context of Sodium

Sodium is a chemical element; it has symbol Na (from Neo-Latin natrium) and atomic number 11. It is a soft, silvery-white, highly reactive metal. Sodium is an alkali metal, being in group 1 of the periodic table. Its only stable isotope is Na. The free metal does not occur in nature and must be prepared from compounds. Sodium is the sixth most abundant element in the Earth's crust and exists in numerous minerals such as feldspars, sodalite, and halite (NaCl). Many salts of sodium are highly water-soluble: sodium ions have been leached by the action of water from the Earth's minerals over eons, and thus sodium and chlorine are the most common dissolved elements by weight in the oceans.

Sodium was first isolated by Humphry Davy in 1807 by the electrolysis of sodium hydroxide. Among many other useful sodium compounds, sodium hydroxide (lye) is used in soap manufacture, and sodium chloride (edible salt) is a de-icing agent and a nutrient for animals including humans.

View the full Wikipedia page for Sodium
↑ Return to Menu

Alkali metal in the context of Reducing agent

Examples of substances that are common reducing agents include hydrogen, carbon monoxide, the alkali metals, formic acid, oxalic acid, and sulfite compounds.

View the full Wikipedia page for Reducing agent
↑ Return to Menu

Alkali metal in the context of Alkali

In chemistry, an alkali (/ˈælkəl/ ; from the Arabic word al-qāly, القالِي) is a basic salt of an alkali metal or an alkaline earth metal. An alkali can also be defined as a base that dissolves in water. A solution of a soluble base has a pH greater than 7.0. The adjective alkaline, and less often, alkalescent, is commonly used in English as a synonym for basic, especially for bases soluble in water. This broad use of the term is likely to have come about because alkalis were the first bases known to obey the Arrhenius definition of a base, and they are still among the most common bases.

View the full Wikipedia page for Alkali
↑ Return to Menu

Alkali metal in the context of Acetate

An acetate is a salt formed by the combination of acetic acid with a base (e.g. alkaline, earthy, metallic, nonmetallic, or radical base). "Acetate" also describes the conjugate base or ion (specifically, the negatively charged ion called an anion) typically found in aqueous solution and written with the chemical formula C
2
H
3
O
2
. The neutral molecules formed by the combination of the acetate ion and a positive ion (called a cation) are also commonly called "acetates" (hence, acetate of lead, acetate of aluminium, etc.). The simplest of these is hydrogen acetate (called acetic acid) with corresponding salts, esters, and the polyatomic anion CH
3
CO
2
, or CH
3
COO
.

Most of the approximately 5 million tonnes of acetic acid produced annually in industry are used in the production of acetates, which usually take the form of polymers. In nature, acetate is the most common building block for biosynthesis.

View the full Wikipedia page for Acetate
↑ Return to Menu

Alkali metal in the context of Caesium

Caesium (IUPAC spelling; also spelled cesium in American English) is a chemical element; it has symbol Cs and atomic number 55. It is a soft, silvery-golden alkali metal with a melting point of 28.5 °C (83.3 °F; 301.6 K), which makes it one of only five elemental metals that are liquid at or near room temperature. Caesium has physical and chemical properties similar to those of rubidium and potassium. It is pyrophoric and reacts with water even at −116 °C (−177 °F). It is the least electronegative stable element, with a value of 0.79 on the Pauling scale. It has only one stable isotope, caesium-133. Caesium is mined mostly from pollucite. Caesium-137, a fission product, is extracted from waste produced by nuclear reactors. It has the largest atomic radius of all elements whose radii have been measured or calculated, at about 260 picometres.

The German chemist Robert Bunsen and physicist Gustav Kirchhoff discovered caesium in 1860 by the newly developed method of flame spectroscopy. The first small-scale applications for caesium were as a "getter" in vacuum tubes and in the light-sensitive anodes of photoelectric cells. Caesium is widely used in highly accurate atomic clocks. In 1967, the International System of Units began using a specific hyperfine transition of neutral caesium-133 atoms to define the basic unit of time, the second.

View the full Wikipedia page for Caesium
↑ Return to Menu

Alkali metal in the context of Rubidium

Rubidium is a chemical element; it has symbol Rb and atomic number 37. It is a very soft, whitish-grey solid in the alkali metal group, similar to potassium and caesium. Rubidium is the first alkali metal in the group to have a density higher than water. On Earth, natural rubidium comprises two isotopes: 72% is a stable isotope Rb, and 28% is slightly radioactive Rb, with a half-life of 48.8 billion years – more than three times as long as the estimated age of the universe.

German chemists Robert Bunsen and Gustav Kirchhoff discovered rubidium in 1861 by the newly developed technique, flame spectroscopy. The name comes from the Latin word rubidus, meaning deep red, the color of its emission spectrum. Rubidium's compounds have various chemical and electronic applications. Rubidium metal is easily vaporized and has a convenient spectral absorption range, making it a frequent target for laser manipulation of atoms. Rubidium is not a known nutrient for any living organisms. However, rubidium ions have similar properties and the same charge as potassium ions, and are actively taken up and treated by animal cells in similar ways.

View the full Wikipedia page for Rubidium
↑ Return to Menu

Alkali metal in the context of Sesquioxide

A sesquioxide is an oxide of an element (or radical), where the ratio between the number of atoms of that element and the number of atoms of oxygen is 2:3. For example, aluminium oxide Al2O3 and phosphorus(III) oxide P4O6 are sesquioxides.Many sesquioxides contain a metal in the +3 oxidation state and the oxide ion O, e.g., aluminium oxide Al2O3, lanthanum(III) oxide La2O3 and iron(III) oxide Fe2O3. Sesquioxides of iron and aluminium are found in soil. The alkali metal sesquioxides are exceptions because they contain both peroxide O2−2 and superoxide O2 ions, e.g., rubidium sesquioxide Rb4O6 is formulated (Rb)4(O2−2)(O2)2. Sesquioxides of metalloids and nonmetals are better formulated as covalent, e.g. boron trioxide B2O3, dinitrogen trioxide N2O3 and phosphorus(III) oxide P4O6; chlorine trioxide Cl2O3 and bromine trioxide Br2O3 do not have oxidation state +3 on the halogen.

Many transition metal oxides crystallize in the corundum structure type, with space group R3c. Sesquioxides of rare earth elements crystalize into one or more of three crystal structures: hexagonal (type A, space group P3m1), monoclinic (type B, space group C2/m), or body-centered cubic (type C, space group Ia3).

View the full Wikipedia page for Sesquioxide
↑ Return to Menu

Alkali metal in the context of Diorite

Diorite (/ˈd.ərt/ DY-ə-ryte) is an intrusive igneous rock formed by the slow cooling underground of magma (molten rock) that has a moderate content of silica and a relatively low content of alkali metals. It is intermediate in composition between low-silica (mafic) gabbro and high-silica (felsic) granite.

Diorite is found in mountain-building belts (orogens) on the margins of continents. It has the same composition as the fine-grained volcanic rock, andesite, which is also common in orogens.

View the full Wikipedia page for Diorite
↑ Return to Menu

Alkali metal in the context of Mineral group

In geology and mineralogy, a mineral group is a set of mineral species with essentially the same crystal structure and composed of chemically similar elements.

For example, the amphibole group consists of 15 or more mineral species, most of them with the general unit formula A
x
B
y
C
14-3x-2y
Si
8
O
22
(OH)
2
, where A is a trivalent cation such as Fe
or Al
, B is a divalent cation such as Fe
, Ca
, or Mg
, and C is an alkali metal cation such as Li
, Na
, or K
. In all these minerals, the anions consist mainly of groups of four SiO
4
tetrahedra connected by shared oxygen corners so as to form a double chain of fused six-member rings. In some of the species, aluminum Al
may replace some silicon atoms Si
in the backbone, with extra B or C cations to balance the charges.

View the full Wikipedia page for Mineral group
↑ Return to Menu

Alkali metal in the context of Potassium carbonate

Potassium carbonate is the inorganic compound with the formula K2CO3. It is a white salt, which is soluble in water and forms a strongly alkaline solution. It is deliquescent, often appearing as a damp or wet solid. Potassium carbonate is used in production of dutch process cocoa powder, production of soap and production of glass. Commonly, it can be found as the result of leakage of alkaline batteries. Potassium carbonate is a potassium salt of carbonic acid. This salt consists of potassium cations K and carbonate anions CO2−3, and is therefore an alkali metal carbonate.

View the full Wikipedia page for Potassium carbonate
↑ Return to Menu

Alkali metal in the context of Preferred IUPAC name

In chemical nomenclature, a preferred IUPAC name (PIN) is a unique name, assigned to a chemical substance and preferred among all possible names generated by IUPAC nomenclature. The "preferred IUPAC nomenclature" provides a set of rules for choosing between multiple possibilities in situations where it is important to decide on a unique name. It is intended for use in legal and regulatory situations.

Preferred IUPAC names are applicable only for organic compounds, to which the IUPAC (International Union of Pure and Applied Chemistry) has the definition as compounds which contain at least a single carbon atom but no alkali, alkaline earth or transition metals and can be named by the nomenclature of organic compounds (see below). Rules for the remaining organic and inorganic compounds are still under development.The concept of PINs is defined in the introductory chapter and chapter 5 of the "Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013" (freely accessible), which replace two former publications: the "Nomenclature of Organic Chemistry", 1979 (the Blue Book) and "A Guide to IUPAC Nomenclature of Organic Compounds, Recommendations 1993". The full draft version of the PIN recommendations ("Preferred names in the nomenclature of organic compounds", Draft of 7 October 2004) is also available.

View the full Wikipedia page for Preferred IUPAC name
↑ Return to Menu

Alkali metal in the context of Alkali metal nitrate

Alkali metal nitrates are chemical compounds consisting of an alkali metal (lithium, sodium, potassium, rubidium and caesium) and the nitrate ion. Only two are of major commercial value, the sodium and potassium salts. They are white, water-soluble salts with melting points ranging from 255 °C (LiNO
3
) to 414 °C (CsNO
3
) on a relatively narrow span of 159 °C

The melting point of the alkali metal nitrates tends to increase from 255 °C to 414 °C (with an anomaly for rubidium being not properly aligned in the series) as the atomic mass and the ionic radius (naked cation) of the alkaline metal increases, going down in the column. Similarly, but not presented here in the table, the solubility of these salts in water also decreases with the atomic mass of the metal.

View the full Wikipedia page for Alkali metal nitrate
↑ Return to Menu

Alkali metal in the context of Lithium deuteride

Lithium hydride is an inorganic compound with the formula LiH. This alkali metal hydride is a colorless solid, although commercial samples are grey. Characteristic of a salt-like (ionic) hydride, it has a high melting point, and it is not soluble but reactive with all protic organic solvents. It is soluble and nonreactive with certain molten salts such as lithium fluoride, lithium borohydride, and sodium hydride. With a molar mass of 7.95 g/mol, it is the lightest ionic compound.

View the full Wikipedia page for Lithium deuteride
↑ Return to Menu