Afterglow in the context of Alpenglow


Afterglow in the context of Alpenglow

Afterglow Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Afterglow in the context of "Alpenglow"


⭐ Core Definition: Afterglow

In meteorology, an afterglow is an optical phenomenon, generally referring to a broad arch of whitish or pinkish sunlight in the twilight sky after sunset, consisting of purple light and bright segment. It consists of several atmospheric optical phenomena. The purple light mainly occurs when the Sun is 2–6° below the horizon, during civil twilight (from sunset to civil dusk), while the bright segment lasts until the end of the nautical twilight. Similarly, a foreglow is a broad arch of whitish or pinkish sunlight in the twilight sky before sunrise, consisting of purple light and bright segment.

Afterglow is often seen in volcanic eruptions, in which the purple light might also be called volcanic purple light. In volcanic occurrences specifically, the light is scattered by fine particulates, like dust, suspended in the atmosphere. Afterglow may refer to the golden-red glowing light from the sunset and sunrise reflected in the sky in alpenglow (similar to the Belt of Venus) and in particularly for its last stage, when the purple light is reflected.

↓ Menu
HINT:

👉 Afterglow in the context of Alpenglow

Alpenglow (from German: Alpenglühen, lit.'Alps glow'; Italian: enrosadira) is an optical phenomenon that appears as a horizontal reddish glow near the horizon opposite to the Sun when the solar disk is just below the horizon.

↓ Explore More Topics
In this Dossier

Afterglow in the context of Ozone layer

The ozone layer or ozone shield is a region of Earth's stratosphere that absorbs most of the Sun's ultraviolet radiation. It contains a high concentration of ozone (O3) in relation to other parts of the atmosphere, although still small in relation to other gases in the stratosphere. The ozone layer peaks at 8 to 15 parts per million of ozone, while the average ozone concentration in Earth's atmosphere as a whole is about 0.3 parts per million. The ozone layer is mainly found in the lower portion of the stratosphere, from approximately 15 to 35 kilometers (9 to 22 mi) above Earth, although its thickness varies seasonally and geographically.

The ozone layer was discovered in 1913 by French physicists Charles Fabry and Henri Buisson. Measurements of the sun showed that the radiation sent out from its surface and reaching the ground on Earth is usually consistent with the spectrum of a black body with a temperature in the range of 5,500–6,000 K (5,230–5,730 °C), except that there was no radiation below a wavelength of about 310 nm at the ultraviolet end of the spectrum. It was deduced that the missing radiation was being absorbed by something in the atmosphere. Eventually the spectrum of the missing radiation was matched to only one known chemical, ozone. Its properties were explored in detail by the British meteorologist G. M. B. Dobson, who developed a simple spectrophotometer (the Dobsonmeter) that could be used to measure stratospheric ozone from the ground. Between 1928 and 1958, Dobson established a worldwide network of ozone monitoring stations, which continue to operate to this day. The "Dobson unit" (DU), a convenient measure of the amount of ozone overhead, is named in his honor.

View the full Wikipedia page for Ozone layer
↑ Return to Menu

Afterglow in the context of Stratosphere

The stratosphere is the second-lowest layer of the atmosphere of Earth, located above the troposphere and below the mesosphere. Pronounced /ˈstrætəˌsfɪər, -t-/, the name originates from from Ancient Greek στρωτός (strōtós) 'layer, stratum' and -sphere. The stratosphere is composed of stratified temperature zones, with the warmer layers of air located higher (closer to outer space) and the cooler layers lower (closer to the planetary surface of the Earth). The increase of temperature with altitude is a result of the absorption of the Sun's ultraviolet (UV) radiation by the ozone layer, where ozone is exothermically photolyzed into oxygen in a cyclical fashion. This temperature inversion is in contrast to the troposphere, where temperature decreases with altitude, and between the troposphere and stratosphere is the tropopause border that demarcates the beginning of the temperature inversion.

Near the equator, the lower edge of the stratosphere is as high as 20 km (66,000 ft; 12 mi), at mid-latitudes around 10 km (33,000 ft; 6.2 mi), and at the poles about 7 km (23,000 ft; 4.3 mi). Temperatures range from an average of −51 °C (−60 °F; 220 K) near the tropopause to an average of −15 °C (5.0 °F; 260 K) near the mesosphere. Stratospheric temperatures also vary within the stratosphere as the seasons change, reaching particularly low temperatures in the polar night (winter). Winds in the stratosphere can far exceed those in the troposphere, reaching near 60 m/s (220 km/h; 130 mph) in the Southern polar vortex.

View the full Wikipedia page for Stratosphere
↑ Return to Menu

Afterglow in the context of Mesosphere

The mesosphere (/ˈmɛsəsfɪər, ˈmɛz-, ˈmsə-, -zə-/; from Ancient Greek μέσος (mésos) 'middle' and -sphere) is the third layer of the atmosphere, directly above the stratosphere and directly below the thermosphere. In the mesosphere, temperature decreases as altitude increases. This characteristic is used to define limits: it begins at the top of the stratosphere (sometimes called the stratopause), and ends at the mesopause, which is the coldest part of Earth's atmosphere, with temperatures below −143 °C (−225 °F; 130 K). The exact upper and lower boundaries of the mesosphere vary with latitude and with season (higher in winter and at the tropics, lower in summer and at the poles), but the lower boundary is usually located at altitudes from 47 to 51 km (29 to 32 mi; 154,000 to 167,000 ft) above sea level, and the upper boundary (the mesopause) is usually from 85 to 100 km (53 to 62 mi; 279,000 to 328,000 ft).

The stratosphere and mesosphere are sometimes collectively referred to as the "middle atmosphere", which spans altitudes approximately between 12 and 80 km (7.5 and 49.7 mi) above Earth's surface. The mesopause, at an altitude of 80–90 km (50–56 mi), separates the mesosphere from the thermosphere—the second-outermost layer of Earth's atmosphere. On Earth, the mesopause nearly co-incides with the turbopause, below which different chemical species are well-mixed due to turbulent eddies. Above this level the atmosphere becomes non-uniform because the scale heights of different chemical species differ according to their molecular masses.

View the full Wikipedia page for Mesosphere
↑ Return to Menu

Afterglow in the context of Thermosphere

The thermosphere is the layer in the Earth's atmosphere directly above the mesosphere and below the exosphere. Within this layer of the atmosphere, ultraviolet radiation causes photoionization/photodissociation of molecules, creating ions; the bulk of the ionosphere thus exists within the thermosphere. Taking its name from the Greek θερμός (pronounced thermos) meaning heat, the thermosphere begins at about 80 km (50 mi) above sea level. At these high altitudes, the residual atmospheric gases sort into strata according to molecular mass (see turbosphere). Thermospheric temperatures increase with altitude due to absorption of highly energetic solar radiation. Temperatures are highly dependent on solar activity, and can rise to 2,000 °C (3,630 °F) or more. Radiation causes the atmospheric particles in this layer to become electrically charged, enabling radio waves to be refracted and thus be received beyond the horizon. In the exosphere, beginning at about 600 km (375 mi) above sea level, the atmosphere turns into outer space, although, by the judging criteria set for the definition of the Kármán line (100 km), most of the thermosphere is part of outer space. The border between the thermosphere and exosphere is known as the thermopause.

The highly attenuated gas in this layer can reach 2,500 °C (4,530 °F). Despite the high temperature, an observer or object will experience low temperatures in the thermosphere, because the extremely low density of the gas (practically a hard vacuum) is insufficient for the molecules to conduct heat. A normal thermometer will read significantly below 0 °C (32 °F), at least at night, because the energy lost by thermal radiation would exceed the energy acquired from the atmospheric gas by direct contact. In the anacoustic zone above 160 kilometres (99 mi), the density is so low that molecular interactions are too infrequent to permit the transmission of sound.

View the full Wikipedia page for Thermosphere
↑ Return to Menu

Afterglow in the context of Atmospheric phenomenon

↑ Return to Menu

Afterglow in the context of Belt of Venus

The Belt of Venus, also called Venus's Girdle, the antitwilight arch, or antitwilight, is an atmospheric phenomenon visible shortly before sunrise or after sunset, during civil twilight. It is a pinkish glow that surrounds the observer, extending roughly 10–20° above the horizon. It appears opposite to the afterglow, which it also reflects.

In a way, the Belt of Venus is actually alpenglow visible near the horizon during twilight, above the antisolar point. Like alpenglow, the backscatter of reddened sunlight also creates the Belt of Venus. Though unlike alpenglow, the sunlight scattered by fine particulates that cause the rosy arch of the Belt shines high in the atmosphere and lasts for a while after sunset or before sunrise.

View the full Wikipedia page for Belt of Venus
↑ Return to Menu

Afterglow in the context of Stratospheric

The stratosphere is the second-lowest layer of the atmosphere of Earth, located above the troposphere and below the mesosphere. Pronounced /ˈstrætəˌsfɪər, -t-/, the name originates from Ancient Greek στρωτός (strōtós) 'layer, stratum' and -sphere. The stratosphere is composed of stratified temperature zones, with the warmer layers of air located higher (closer to outer space) and the cooler layers lower (closer to the planetary surface of the Earth). The increase of temperature with altitude is a result of the absorption of the Sun's ultraviolet (UV) radiation by the ozone layer, where ozone is exothermically photolyzed into oxygen in a cyclical fashion. This temperature inversion is in contrast to the troposphere, where temperature decreases with altitude, and between the troposphere and stratosphere is the tropopause border that demarcates the beginning of the temperature inversion.

Near the equator, the lower edge of the stratosphere is as high as 20 km (66,000 ft; 12 mi), at mid-latitudes around 10 km (33,000 ft; 6.2 mi), and at the poles about 7 km (23,000 ft; 4.3 mi). Temperatures range from an average of −51 °C (−60 °F; 220 K) near the tropopause to an average of −15 °C (5.0 °F; 260 K) near the mesosphere. Stratospheric temperatures also vary within the stratosphere as the seasons change, reaching particularly low temperatures in the polar night (winter). Winds in the stratosphere can far exceed those in the troposphere, reaching near 60 m/s (220 km/h; 130 mph) in the Southern polar vortex.

View the full Wikipedia page for Stratospheric
↑ Return to Menu