Mesosphere in the context of Afterglow


Mesosphere in the context of Afterglow

Mesosphere Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Mesosphere in the context of "Afterglow"


⭐ Core Definition: Mesosphere

The mesosphere (/ˈmɛsəsfɪər, ˈmɛz-, ˈmsə-, -zə-/; from Ancient Greek μέσος (mésos) 'middle' and -sphere) is the third layer of the atmosphere, directly above the stratosphere and directly below the thermosphere. In the mesosphere, temperature decreases as altitude increases. This characteristic is used to define limits: it begins at the top of the stratosphere (sometimes called the stratopause), and ends at the mesopause, which is the coldest part of Earth's atmosphere, with temperatures below −143 °C (−225 °F; 130 K). The exact upper and lower boundaries of the mesosphere vary with latitude and with season (higher in winter and at the tropics, lower in summer and at the poles), but the lower boundary is usually located at altitudes from 47 to 51 km (29 to 32 mi; 154,000 to 167,000 ft) above sea level, and the upper boundary (the mesopause) is usually from 85 to 100 km (53 to 62 mi; 279,000 to 328,000 ft).

The stratosphere and mesosphere are sometimes collectively referred to as the "middle atmosphere", which spans altitudes approximately between 12 and 80 km (7.5 and 49.7 mi) above Earth's surface. The mesopause, at an altitude of 80–90 km (50–56 mi), separates the mesosphere from the thermosphere—the second-outermost layer of Earth's atmosphere. On Earth, the mesopause nearly co-incides with the turbopause, below which different chemical species are well-mixed due to turbulent eddies. Above this level the atmosphere becomes non-uniform because the scale heights of different chemical species differ according to their molecular masses.

↓ Menu
HINT:

In this Dossier

Mesosphere in the context of Cloud

In meteorology, a cloud is an aerosol consisting of a visible mass of miniature liquid droplets, ice crystals, or other particles, suspended in the atmosphere of a planetary body or similar space. Water or various other chemicals may comprise the droplets and crystals. On Earth, clouds are formed as a result of saturation of the air when it is cooled to its dew point, or when it gains sufficient moisture, usually in the form of water vapor, from an adjacent source to raise the dew point to the ambient temperature.

Clouds are seen in the Earth's homosphere, which includes the troposphere, stratosphere, and mesosphere.Nephology is the science of clouds, which is undertaken in the cloud physics branch of meteorology. The World Meteorological Organization uses two methods of naming clouds in their respective layers of the homosphere, Latin and common name.

View the full Wikipedia page for Cloud
↑ Return to Menu

Mesosphere in the context of Stratosphere

The stratosphere is the second-lowest layer of the atmosphere of Earth, located above the troposphere and below the mesosphere. Pronounced /ˈstrætəˌsfɪər, -t-/, the name originates from from Ancient Greek στρωτός (strōtós) 'layer, stratum' and -sphere. The stratosphere is composed of stratified temperature zones, with the warmer layers of air located higher (closer to outer space) and the cooler layers lower (closer to the planetary surface of the Earth). The increase of temperature with altitude is a result of the absorption of the Sun's ultraviolet (UV) radiation by the ozone layer, where ozone is exothermically photolyzed into oxygen in a cyclical fashion. This temperature inversion is in contrast to the troposphere, where temperature decreases with altitude, and between the troposphere and stratosphere is the tropopause border that demarcates the beginning of the temperature inversion.

Near the equator, the lower edge of the stratosphere is as high as 20 km (66,000 ft; 12 mi), at mid-latitudes around 10 km (33,000 ft; 6.2 mi), and at the poles about 7 km (23,000 ft; 4.3 mi). Temperatures range from an average of −51 °C (−60 °F; 220 K) near the tropopause to an average of −15 °C (5.0 °F; 260 K) near the mesosphere. Stratospheric temperatures also vary within the stratosphere as the seasons change, reaching particularly low temperatures in the polar night (winter). Winds in the stratosphere can far exceed those in the troposphere, reaching near 60 m/s (220 km/h; 130 mph) in the Southern polar vortex.

View the full Wikipedia page for Stratosphere
↑ Return to Menu

Mesosphere in the context of Air current

In meteorology, air currents are concentrated areas of winds. They are mainly due to differences in atmospheric pressure or temperature. They are divided into horizontal and vertical currents; both are present at mesoscale while horizontal ones dominate at synoptic scale. Air currents are not only found in the troposphere, but extend to the stratosphere and mesosphere.

View the full Wikipedia page for Air current
↑ Return to Menu

Mesosphere in the context of Meteor

A meteor, known colloquially as a shooting star, is a glowing streak of a small body (usually meteoroid) going through Earth's atmosphere, after being heated to incandescence by collisions with air molecules in the upper atmosphere, creating a streak of light via its rapid motion and sometimes also by shedding glowing material in its wake. Meteors typically occur in the mesosphere at altitudes from 76–100 kilometres (47–62 miles). The root word meteor comes from the Greek meteōros, meaning "high in the air".

Millions of meteors occur in Earth's atmosphere daily. Most meteoroids that cause meteors are about the size of a grain of sand, i.e. they are usually 1 mm (125 in) or smaller. Meteoroid sizes can be calculated from their mass and density which, in turn, can be estimated from the observed meteor trajectory in the upper atmosphere.Meteors may occur in showers, which arise when Earth passes through a stream of debris left by a comet, or as "random" or "sporadic" meteors, not associated with a specific stream of space debris. A number of specific meteors have been observed, largely by members of the public and largely by accident, but with enough detail that orbits of the meteoroids producing the meteors have been calculated. The atmospheric velocities of meteors result from the movement of Earth around the Sun at about 30 km/s (67,000 mph; 110,000 km/h), the orbital speeds of meteoroids, and the gravity well of Earth.

View the full Wikipedia page for Meteor
↑ Return to Menu

Mesosphere in the context of Heliophysics

Heliophysics (from the prefix "helio", from Attic Greek hḗlios, meaning Sun, and the noun "physics": the science of matter and energy and their interactions) is the physics of the Sun and its connection with the Solar System. NASA defines heliophysics as "(1) the comprehensive new term for the science of the Sun - Solar System Connection, (2) the exploration, discovery, and understanding of Earth's space environment, and (3) the system science that unites all of the linked phenomena in the region of the cosmos influenced by a star like our Sun."

Heliophysics is broader than Solar physics, that studies the Sun itself, including its interior, atmosphere, and magnetic fields. It concentrates on the Sun's effects on Earth and other bodies within the Solar System, as well as the changing conditions in space. It is primarily concerned with the magnetosphere, ionosphere, thermosphere, mesosphere, and upper atmosphere of the Earth and other planets. Heliophysics combines the science of the Sun, corona, heliosphere and geospace, and encompasses a wide variety of astronomical phenomena, including "cosmic rays and particle acceleration, space weather and radiation, dust and magnetic reconnection, nuclear energy generation and internal solar dynamics, solar activity and stellar magnetic fields, aeronomy and space plasmas, magnetic fields and global change", and the interactions of the Solar System with the Milky Way Galaxy.

View the full Wikipedia page for Heliophysics
↑ Return to Menu

Mesosphere in the context of Ionosphere

The ionosphere (/ˈɒnəˌsfɪər/) is the ionized part of the upper atmosphere of Earth, from about 48 km (30 mi) to 965 km (600 mi) above sea level, a region that includes the thermosphere and parts of the mesosphere and exosphere. The ionosphere is ionized by solar radiation. It plays an important role in atmospheric electricity and forms the inner edge of the magnetosphere. It has practical importance because, among other functions, it influences radio propagation to distant places on Earth. Travel through this layer also impacts GPS signals, resulting in effects such as deflection in their path and delay in the arrival of the signal.

View the full Wikipedia page for Ionosphere
↑ Return to Menu

Mesosphere in the context of Homosphere

The homosphere is the layer of an atmosphere where the bulk gases are homogeneously mixed due to turbulent mixing or eddy diffusion. The bulk composition of the air is mostly uniform so the concentrations of molecules are the same throughout the homosphere. The top of the homosphere is called the homopause, also known as the turbopause. Above the homopause is the heterosphere, where diffusion is faster than mixing, and heavy gases decrease in density with altitude more rapidly than lighter gases.

Some of the processes driving this uniformity include heating convection and air flow patterns. In the troposphere, rising warm air replaces higher cooler air which mix gases vertically. Wind patterns push air across the surface mixing it horizontally. At higher altitudes, other atmospheric circulation regimes exist, such as the Brewer-Dobson circulation in the terrestrial stratosphere, which mixes the air. In Earth's mesophere, atmospheric waves become unstable and dissipate, creating turbulent mixing of this region.

View the full Wikipedia page for Homosphere
↑ Return to Menu

Mesosphere in the context of Cloud physics

Cloud physics is the study of the physical processes that lead to the formation, growth and precipitation of atmospheric clouds. These aerosols are found in the troposphere, stratosphere, and mesosphere, which collectively make up the greatest part of the homosphere. Clouds consist of microscopic droplets of liquid water (warm clouds), tiny crystals of ice (cold clouds), or both (mixed phase clouds), along with microscopic particles of dust, smoke, or other matter, known as condensation nuclei. Cloud droplets initially form by the condensation of water vapor onto condensation nuclei when the supersaturation of air exceeds a critical value according to Köhler theory. Cloud condensation nuclei are necessary for cloud droplets formation because of the Kelvin effect, which describes the change in saturation vapor pressure due to a curved surface. At small radii, the amount of supersaturation needed for condensation to occur is so large, that it does not happen naturally. Raoult's law describes how the vapor pressure is dependent on the amount of solute in a solution. At high concentrations, when the cloud droplets are small, the supersaturation required is smaller than without the presence of a nucleus.

In warm clouds, larger cloud droplets fall at a higher terminal velocity; because at a given velocity, the drag force per unit of droplet weight on smaller droplets is larger than on large droplets. The large droplets can then collide with small droplets and combine to form even larger drops. When the drops become large enough that their downward velocity (relative to the surrounding air) is greater than the upward velocity (relative to the ground) of the surrounding air, the drops can fall as precipitation. The collision and coalescence is not as important in mixed phase clouds where the Bergeron process dominates. Other important processes that form precipitation are riming, when a supercooled liquid drop collides with a solid snowflake, and aggregation, when two solid snowflakes collide and combine. The precise mechanics of how a cloud forms and grows is not completely understood, but scientists have developed theories explaining the structure of clouds by studying the microphysics of individual droplets. Advances in weather radar and satellite technology have also allowed the precise study of clouds on a large scale.

View the full Wikipedia page for Cloud physics
↑ Return to Menu

Mesosphere in the context of Upper atmosphere

Upper atmosphere is a collective term that refers to various layers of the atmosphere of the Earth above the troposphere and corresponding regions of the atmospheres of other planets, and includes:

  • The mesosphere, which on Earth lies between the altitudes of about 50 and 80 kilometres (31 and 50 mi), sometimes considered part of the "middle atmosphere" rather than the upper atmosphere
  • The thermosphere, which on Earth lies between the altitudes of about 80 and 700 kilometres (50 and 435 mi)
  • The exosphere, which on Earth lies between the altitudes of about 700 kilometres (435 mi) and 10,000 kilometres (6,200 mi)
  • The ionosphere, an ionized portion of the upper atmosphere which includes the upper mesosphere, thermosphere, and lower exosphere and on Earth lies between the altitudes of 50 and 1,000 kilometres (31 and 621 mi)
View the full Wikipedia page for Upper atmosphere
↑ Return to Menu

Mesosphere in the context of Hunga Tonga–Hunga Haʻapai

Hunga Tonga–Hunga Haʻapai (listen) is a submarine volcano in the South Pacific located about 30 km (19 mi) south of the submarine volcano of Fonuafoʻou and 65 km (40 mi) north of Tongatapu, Tonga's main island. It is part of the highly active Kermadec-Tonga subduction zone and its associated volcanic arc, which extends from New Zealand north-northeast to Fiji, and is formed by the subduction of the Pacific Plate under the Indo-Australian Plate. It lies about 100 km (62 mi) above an active seismic zone. The volcano rises around 2,000 m from the seafloor and has a caldera which on the eve of the 2022 eruption was roughly 150 m below sea level and 4 km at its widest extent. The only major above-water part of the volcano are the twin uninhabited islands of Hunga Tonga and Hunga Haʻapai, which are respectively part of the northern and western rim of the caldera. As a result of the volcano's eruptive history, the islands existed as a single landmass from 2015 to 2022: they were merged by a volcanic cone in a volcanic eruption in 2014–2015, and were separated again by a more explosive eruption in 2022, which also reduced the islands in size. The Hunga Tonga–Hunga Haʻapai volcano has seven historical recorded eruptions.

The most recent eruption, in January 2022, triggered a tsunami that reached the coasts of Japan and the Americas, along with a volcanic plume that soared 58 km (36 miles) into the mesosphere. It was the largest volcanic eruption since the 1991 eruption of Mount Pinatubo and the biggest explosion recorded in the atmosphere by modern instrumentation, far surpassing any 20th-century volcanic event or nuclear bomb test. NASA determined that the eruption was "hundreds of times more powerful" than the atomic bomb dropped on Hiroshima. It is believed that the 1883 eruption of Krakatoa is the only eruption in recent centuries that rivaled the atmospheric disturbance it produced. The January 2022 eruption is the largest volcanic eruption in the 21st century.

View the full Wikipedia page for Hunga Tonga–Hunga Haʻapai
↑ Return to Menu

Mesosphere in the context of Atmosphere of Venus

The atmosphere of Venus is the very dense layer of gases surrounding the planet Venus. Venus's atmosphere is composed of 96.5% carbon dioxide and 3.5% nitrogen, with other chemical compounds present only in trace amounts. It is much denser and hotter than that of Earth; the temperature at the surface is 740 K (467 °C, 872 °F), and the pressure is 93 bar (9.3 MPa; 1,350 psi), roughly the pressure found 900 m (3,000 ft) under water on Earth. The atmosphere of Venus supports decks of opaque clouds of sulfuric acid that cover the entire planet, preventing, until recently, optical Earth-based and orbital observation of the surface. Information about surface topography was originally obtained exclusively by radar imaging. However, the Parker Solar Probe was able to capture images of the surface using IR and nearby visible light frequencies, confirming the topography.

Aside from the very surface layers, the atmosphere is in a state of vigorous circulation. The upper layer of troposphere exhibits a phenomenon of super-rotation, in which the atmosphere circles the planet in just four Earth days, much faster than the planet's sidereal day of 243 days. The winds supporting super-rotation blow at a speed of 100 m/s (≈360 km/h or 220 mph) or more. Winds move at up to 60 times the speed of the planet's rotation, while Earth's fastest winds are only 10% to 20% rotation speed. However, wind speed decreases with decreasing elevation to less than 2.8 m/s (≈10 km/h or 6.2 mph) on the surface. Near the poles are anticyclonic structures called polar vortices. Each vortex is double-eyed and shows a characteristic S-shaped pattern of clouds. Above there is an intermediate layer of mesosphere which separates the troposphere from the thermosphere. The thermosphere is also characterized by strong circulation, but very different in its nature—the gases heated and partially ionized by sunlight in the sunlit hemisphere migrate to the dark hemisphere where they recombine and downwell.

View the full Wikipedia page for Atmosphere of Venus
↑ Return to Menu

Mesosphere in the context of Atmosphere of Uranus

The atmosphere of Uranus is composed primarily of hydrogen and helium. At depth, it is significantly enriched in volatiles (dubbed "ices") such as water, ammonia, and methane. The opposite is true for the upper atmosphere, which contains very few gases heavier than hydrogen and helium due to its low temperature. Uranus's atmosphere is the coldest of all the planets, with its temperature reaching as low as 49 K.

The Uranian atmosphere can be divided into three main layers: the troposphere, between altitudes of −300 and 50 km and pressures from 100 to 0.1 bar; the stratosphere, spanning altitudes between 50 and 4000 km and pressures of between 0.1 and 10 bar; and the hot thermosphere (and exosphere) extending from an altitude of 4,000 km to several Uranian radii from the nominal surface at 1 bar pressure. Unlike Earth's, Uranus's atmosphere has no mesosphere.

View the full Wikipedia page for Atmosphere of Uranus
↑ Return to Menu

Mesosphere in the context of Exosphere

The exosphere (/ˈɛkssfɪər, ˈɛɡz-/; from Ancient Greek ἔξω (éxō) 'outer, outside' and -sphere) is a thin, atmosphere-like volume surrounding a planet or natural satellite where molecules are gravitationally bound to that body, but where the density is so low that the molecules are essentially collision-less. In the case of bodies with substantial atmospheres, such as Earth's atmosphere, the exosphere is the uppermost layer, where the atmosphere thins out and merges with outer space. It is located directly above the thermosphere. Very little is known about it due to a lack of research. Mercury, the Moon, Ceres, Europa, and Ganymede have surface boundary exospheres, which are exospheres without a denser atmosphere underneath. The Earth's exosphere is mostly hydrogen and helium, with some heavier atoms and molecules near the base.

View the full Wikipedia page for Exosphere
↑ Return to Menu

Mesosphere in the context of Thermosphere

The thermosphere is the layer in the Earth's atmosphere directly above the mesosphere and below the exosphere. Within this layer of the atmosphere, ultraviolet radiation causes photoionization/photodissociation of molecules, creating ions; the bulk of the ionosphere thus exists within the thermosphere. Taking its name from the Greek θερμός (pronounced thermos) meaning heat, the thermosphere begins at about 80 km (50 mi) above sea level. At these high altitudes, the residual atmospheric gases sort into strata according to molecular mass (see turbosphere). Thermospheric temperatures increase with altitude due to absorption of highly energetic solar radiation. Temperatures are highly dependent on solar activity, and can rise to 2,000 °C (3,630 °F) or more. Radiation causes the atmospheric particles in this layer to become electrically charged, enabling radio waves to be refracted and thus be received beyond the horizon. In the exosphere, beginning at about 600 km (375 mi) above sea level, the atmosphere turns into outer space, although, by the judging criteria set for the definition of the Kármán line (100 km), most of the thermosphere is part of outer space. The border between the thermosphere and exosphere is known as the thermopause.

The highly attenuated gas in this layer can reach 2,500 °C (4,530 °F). Despite the high temperature, an observer or object will experience low temperatures in the thermosphere, because the extremely low density of the gas (practically a hard vacuum) is insufficient for the molecules to conduct heat. A normal thermometer will read significantly below 0 °C (32 °F), at least at night, because the energy lost by thermal radiation would exceed the energy acquired from the atmospheric gas by direct contact. In the anacoustic zone above 160 kilometres (99 mi), the density is so low that molecular interactions are too infrequent to permit the transmission of sound.

View the full Wikipedia page for Thermosphere
↑ Return to Menu

Mesosphere in the context of Stratospheric

The stratosphere is the second-lowest layer of the atmosphere of Earth, located above the troposphere and below the mesosphere. Pronounced /ˈstrætəˌsfɪər, -t-/, the name originates from Ancient Greek στρωτός (strōtós) 'layer, stratum' and -sphere. The stratosphere is composed of stratified temperature zones, with the warmer layers of air located higher (closer to outer space) and the cooler layers lower (closer to the planetary surface of the Earth). The increase of temperature with altitude is a result of the absorption of the Sun's ultraviolet (UV) radiation by the ozone layer, where ozone is exothermically photolyzed into oxygen in a cyclical fashion. This temperature inversion is in contrast to the troposphere, where temperature decreases with altitude, and between the troposphere and stratosphere is the tropopause border that demarcates the beginning of the temperature inversion.

Near the equator, the lower edge of the stratosphere is as high as 20 km (66,000 ft; 12 mi), at mid-latitudes around 10 km (33,000 ft; 6.2 mi), and at the poles about 7 km (23,000 ft; 4.3 mi). Temperatures range from an average of −51 °C (−60 °F; 220 K) near the tropopause to an average of −15 °C (5.0 °F; 260 K) near the mesosphere. Stratospheric temperatures also vary within the stratosphere as the seasons change, reaching particularly low temperatures in the polar night (winter). Winds in the stratosphere can far exceed those in the troposphere, reaching near 60 m/s (220 km/h; 130 mph) in the Southern polar vortex.

View the full Wikipedia page for Stratospheric
↑ Return to Menu

Mesosphere in the context of Stratopause

The stratopause (formerly mesopeak) is the level of the atmosphere which is the boundary between two layers: the stratosphere and the mesosphere. In the stratosphere, the temperature increases with altitude, and the stratopause is the region where a maximum in the temperature occurs. This atmospheric feature is not exclusive to Earth, but also occurs on any other planet or moon with an atmosphere.According to James Kasting, planets whose atmospheres do not absorb shortwave sunlight, such as Venus and Mars, do not have a Stratosphere and thus have no Stratopause.

On Earth, the stratopause is about 50 km (31 mi) above sea level. The atmospheric pressure is around 11000 of the pressure at sea level. The temperature in the stratopause is −2.5 °C (27.5 °F).

View the full Wikipedia page for Stratopause
↑ Return to Menu

Mesosphere in the context of Mesopause

The mesopause is the point of minimum temperature at the boundary between the mesosphere and the thermosphere atmospheric regions. Due to the lack of solar heating and very strong radiative cooling from carbon dioxide, the mesosphere is the coldest region on Earth with temperatures as low as -100 °C (-148 °F or 173 K). The altitude of the mesopause for many years was assumed to be at around 85 km (53 mi), but observations to higher altitudes and modeling studies in the last 10 years have shown that in fact there are two mesopauses - one at about 85 km and a stronger one at about 100 km (62 mi), with a layer of slightly warmer air between them.

Another feature is that the summer mesopause is cooler than the winter (sometimes referred to as the mesopause anomaly). It is due to a summer-to-winter circulation giving rise to upwelling at the summer pole and downwelling at the winter pole. Air rising will expand and cool resulting in a cold summer mesopause and conversely downwelling air results in compression and associated increase in temperature at the winter mesopause. In the mesosphere the summer-to-winter circulation is due to gravity wave dissipation, which deposits momentum against the mean east–west flow, resulting in a small north–south circulation.

View the full Wikipedia page for Mesopause
↑ Return to Menu