Absorption spectroscopy in the context of Atomic absorption


Absorption spectroscopy in the context of Atomic absorption

Absorption spectroscopy Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Absorption spectroscopy in the context of "Atomic absorption"


⭐ Core Definition: Absorption spectroscopy

Absorption spectroscopy is spectroscopy that involves techniques that measure the absorption of electromagnetic radiation, as a function of frequency or wavelength, due to its interaction with a sample. The sample absorbs energy, i.e., photons, from the radiating field. The intensity of the absorption varies as a function of frequency, and this variation is the absorption spectrum. Absorption spectroscopy is performed across the electromagnetic spectrum.

Absorption spectroscopy is employed as an analytical chemistry tool to determine the presence of a particular substance in a sample and, in many cases, to quantify the amount of the substance present. Infrared and ultraviolet–visible spectroscopy are particularly common in analytical applications. Absorption spectroscopy is also employed in studies of molecular and atomic physics, astronomical spectroscopy and remote sensing.

↓ Menu
HINT:

👉 Absorption spectroscopy in the context of Atomic absorption

Atomic absorption spectroscopy (AAS) is an elemental analysis method for determining the concentration of metals in a given sample.

The principle of AAS relies on the vaporization of metals within a sample when introduced to a flame. Every ground state metal absorbs light radiation (and excites) at a different wavelength. This uniqueness allows each metallic element to have its own absorption spectrum that corresponds to its identity. The total absorbed radiation at a specific wavelength by an element in the sample is proportional to the density of atoms of the element. The quantification of this relationship is used to determine the concentration of specific metals in the sample.

↓ Explore More Topics
In this Dossier

Absorption spectroscopy in the context of Light absorption

In physics, absorption of electromagnetic radiation is how matter (typically electrons bound in atoms) takes up a photon's energy—and so transforms electromagnetic energy into internal energy of the absorber (for example, thermal energy).

A notable effect of the absorption of electromagnetic radiation is attenuation of the radiation; attenuation is the gradual reduction of the intensity of light waves as they propagate through a medium.

View the full Wikipedia page for Light absorption
↑ Return to Menu

Absorption spectroscopy in the context of Trichromacy

Trichromacy or trichromatism is the possession of three independent channels for conveying color information, derived from the three different types of cone cells in the eye. Organisms with trichromacy are called trichromats.

The normal explanation of trichromacy is that the organism's retina contains three types of color receptors (called cone cells in vertebrates) with different absorption spectra. In actuality, the number of such receptor types may be greater than three, since different types may be active at different light intensities. In vertebrates with three types of cone cells, at low light intensities the rod cells may contribute to color vision.

View the full Wikipedia page for Trichromacy
↑ Return to Menu

Absorption spectroscopy in the context of Pulse oximetry

Pulse oximetry is a noninvasive method for monitoring blood oxygen saturation. Peripheral oxygen saturation (SpO2) readings are typically within 2% accuracy (within 4% accuracy in 95% of cases) of the more accurate (and invasive) reading of arterial oxygen saturation (SaO2) from arterial blood gas analysis.

A standard pulse oximeter passes two wavelengths of light through tissue to a photodetector. Taking advantage of the pulsate flow of arterial blood, it measures the change in absorbance over the course of a cardiac cycle, allowing it to determine the absorbance due to arterial blood alone, excluding unchanging absorbance due to venous blood, skin, bone, muscle, fat, and, in many cases, nail polish. The two wavelengths measure the quantities of bound (oxygenated) and unbound (non-oxygenated) hemoglobin, and from their ratio, the percentage of bound hemoglobin is computed.The most common approach is transmissive pulse oximetry. In this approach, one side of a thin part of the patient's body, usually a fingertip or earlobe, is illuminated, and the photodetector is on the other side. Fingertips and earlobes have disproportionately high blood flow relative to their size, in order to keep warm, but this will be lacking in hypothermic patients. Other convenient sites include an infant's foot or an unconscious patient's cheek or tongue.

View the full Wikipedia page for Pulse oximetry
↑ Return to Menu

Absorption spectroscopy in the context of Infra-red (IR) spectroscopy

Infrared spectroscopy (IR spectroscopy or vibrational spectroscopy) is the measurement of the interaction of infrared radiation with matter by absorption, emission, or reflection. It is used to study and identify chemical substances or functional groups in solid, liquid, or gaseous forms. It can be used to characterize new materials or identify and verify known and unknown samples. The method or technique of infrared spectroscopy is conducted with an instrument called an infrared spectrometer (or spectrophotometer) which produces an infrared spectrum. An IR spectrum can be visualized in a graph of infrared light absorbance (or transmittance) on the vertical axis vs. frequency, wavenumber or wavelength on the horizontal axis. Typical units of wavenumber used in IR spectra are reciprocal centimeters, with the symbol cm. Units of IR wavelength are commonly given in micrometers (formerly called "microns"), symbol μm, which are related to the wavenumber in a reciprocal way. A common laboratory instrument that uses this technique is a Fourier transform infrared (FTIR) spectrometer. Two-dimensional IR is also possible as discussed below.

The infrared portion of the electromagnetic spectrum is usually divided into three regions; the near-, mid- and far- infrared, named for their relation to the visible spectrum. The higher-energy near-IR, approximately 14,000–4,000 cm (0.7–2.5 μm wavelength) can excite overtone or combination modes of molecular vibrations. The mid-infrared, approximately 4,000–400 cm (2.5–25 μm) is generally used to study the fundamental vibrations and associated rotational–vibrational structure. The far-infrared, approximately 400–10 cm (25–1,000 μm) has low energy and may be used for rotational spectroscopy and low frequency vibrations. The region from 2–130 cm, bordering the microwave region, is considered the terahertz region and may probe intermolecular vibrations. The names and classifications of these subregions are conventions, and are only loosely based on the relative molecular or electromagnetic properties.

View the full Wikipedia page for Infra-red (IR) spectroscopy
↑ Return to Menu

Absorption spectroscopy in the context of Psittacofulvin

Psittacofulvin pigments, sometimes called psittacins, are responsible for the bright-red, orange, and yellow colors specific to parrots. In parrots, psittacofulvins are synthesized by a polyketide synthase enzyme that is expressed in growing feathers. They consist of linear polyenes terminated by an aldehyde group. There are five known psittacofulvin pigments - tetradecahexenal, hexadecaheptenal, octadecaoctenal and eicosanonenal, in addition to a fifth, currently-unidentified pigment found in the feathers of scarlet macaws. Colorful feathers with high levels of psittacofulvin resist feather-degrading Bacillus licheniformis better than white ones.

Both carotenoids and psittacofulvins have narrow-band absorbance spectra, reflecting pale yellow or red pigmentary colors, making them difficult to distinguish between using spectral measurements. However, there are differences between them when researched spectroscopically. The carotenoid and psittacofulvin yellows are very similar, but the red parrot pigment offers an advantage: it creates a more deep-red color when compared to astaxanthin, the pigment's counterpart in most other birds.

View the full Wikipedia page for Psittacofulvin
↑ Return to Menu

Absorption spectroscopy in the context of Discrete symmetry

In mathematics and geometry, a discrete symmetry is a symmetry that describes non-continuous changes in a system. For example, a square possesses discrete rotational symmetry, as only rotations by multiples of right angles will preserve the square's original appearance. Discrete symmetries sometimes involve some type of 'swapping', these swaps usually being called reflections or interchanges. In mathematics and theoretical physics, a discrete symmetry is a symmetry under the transformations of a discrete group—e.g. a topological group with a discrete topology whose elements form a finite or a countable set.

One of the most prominent discrete symmetries in physics is parity symmetry. It manifests itself in various elementary physical quantum systems, such as quantum harmonic oscillator, electron orbitals of Hydrogen-like atoms by forcing wavefunctions to be even or odd. This in turn gives rise to selection rules that determine which transition lines are visible in atomic absorption spectra.

View the full Wikipedia page for Discrete symmetry
↑ Return to Menu

Absorption spectroscopy in the context of Cytochrome P450

Cytochromes P450 (P450s or CYPs) are a superfamily of enzymes containing heme as a cofactor that mostly, but not exclusively, function as monooxygenases. However, they are not omnipresent; for example, they have not been found in Escherichia coli. In mammals, these enzymes oxidize steroids, fatty acids, xenobiotics, and participate in many biosyntheses. By hydroxylation, CYP450 enzymes convert xenobiotics into hydrophilic derivatives, which are more readily excreted.

P450s are, in general, the terminal oxidase enzymes in electron transfer chains, broadly categorized as P450-containing systems. The term "P450" is derived from the spectrophotometric peak at the wavelength of the absorption maximum of the enzyme (450 nm) when it is in the reduced state and complexed with carbon monoxide. Most P450s require a protein partner to deliver one or more electrons to reduce the iron (and eventually molecular oxygen).

View the full Wikipedia page for Cytochrome P450
↑ Return to Menu

Absorption spectroscopy in the context of Solvatochromism

In chemistry, solvatochromism is the phenomenon observed when the colour of a solution is different when the solute is dissolved in different solvents.

The solvatochromic effect is the way the spectrum of a substance (the solute) varies when the substance is dissolved in a variety of solvents. In this context, the dielectric constant and hydrogen bonding capacity are the most important properties of the solvent. With various solvents there is a different effect on the electronic ground state and excited state of the solute, so that the size of energy gap between them changes as the solvent changes. This is reflected in the absorption or emission spectrum of the solute as differences in the position, intensity, and shape of the spectroscopic bands. When the spectroscopic band occurs in the visible part of the electromagnetic spectrum, solvatochromism is observed as a change of colour. This is illustrated by Reichardt's dye, as shown in the image.

View the full Wikipedia page for Solvatochromism
↑ Return to Menu

Absorption spectroscopy in the context of Ultraviolet–visible spectroscopy

Ultraviolet–visible spectrophotometry (UV–Vis or UV-VIS) refers to absorption spectroscopy or reflectance spectroscopy in part of the ultraviolet and the full, adjacent visible regions of the electromagnetic spectrum. Being relatively inexpensive and easily implemented, this methodology is widely used in diverse applied and fundamental applications. The only requirement is that the sample absorb in the UV–Vis region, i.e. be a chromophore. Absorption spectroscopy is complementary to fluorescence spectroscopy. Parameters of interest, besides the wavelength of measurement, are absorbance (A) or transmittance (%T) or reflectance (%R), and its change with time.

A UV–Vis spectrophotometer is an analytical instrument that measures the amount of ultraviolet (UV) and visible light that is absorbed by a sample. It is a widely used technique in chemistry, biochemistry, and other fields, to identify and quantify compounds in a variety of samples.

View the full Wikipedia page for Ultraviolet–visible spectroscopy
↑ Return to Menu

Absorption spectroscopy in the context of Diffuse reflectance spectroscopy

Diffuse reflectance spectroscopy, or diffuse reflection spectroscopy, is a subset of absorption spectroscopy. It is sometimes called remission spectroscopy. Remission is the reflection or back-scattering of light by a material, while transmission is the passage of light through a material. The word remission implies a direction of scatter, independent of the scattering process. Remission includes both specular and diffusely back-scattered light. The word reflection often implies a particular physical process, such as specular reflection.

The use of the term remission spectroscopy is relatively recent, and found first use in applications related to medicine and biochemistry. While the term is becoming more common in certain areas of absorption spectroscopy, the term diffuse reflectance is firmly entrenched, as in diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and diffuse-reflectance ultraviolet–visible spectroscopy.

View the full Wikipedia page for Diffuse reflectance spectroscopy
↑ Return to Menu

Absorption spectroscopy in the context of Einstein Coefficients

In atomic, molecular, and optical physics, the Einstein coefficients are quantities describing the probability of absorption or emission of a photon by an atom or molecule. The Einstein A coefficients are related to the rate of spontaneous emission of light, and the Einstein B coefficients are related to the absorption and stimulated emission of light. Throughout this article, "light" refers to any electromagnetic radiation, not necessarily in the visible spectrum.

These coefficients are named after Albert Einstein, who proposed them in 1916.

View the full Wikipedia page for Einstein Coefficients
↑ Return to Menu