Absorbance in the context of "Infra-red (IR) spectroscopy"

Play Trivia Questions online!

or

Skip to study material about Absorbance in the context of "Infra-red (IR) spectroscopy"

Ad spacer

⭐ Core Definition: Absorbance

In spectroscopy, absorbance (abbreviated as A) is a logarithmic value which describes the portion of a beam of light which does not pass through a sample. While name refers to the absorption of light, other interactions of light with a sample (reflection, scattering) may also contribute attenuation of the beam passing through the sample. The term "internal absorbance" is sometimes used to describe beam attenuation caused by absorption, while "attenuance" or "experimental absorbance" can be used to emphasize that beam attenuation can be caused by other phenomena.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Absorbance in the context of Infra-red (IR) spectroscopy

Infrared spectroscopy (IR spectroscopy or vibrational spectroscopy) is the measurement of the interaction of infrared radiation with matter by absorption, emission, or reflection. It is used to study and identify chemical substances or functional groups in solid, liquid, or gaseous forms. It can be used to characterize new materials or identify and verify known and unknown samples. The method or technique of infrared spectroscopy is conducted with an instrument called an infrared spectrometer (or spectrophotometer) which produces an infrared spectrum. An IR spectrum can be visualized in a graph of infrared light absorbance (or transmittance) on the vertical axis vs. frequency, wavenumber or wavelength on the horizontal axis. Typical units of wavenumber used in IR spectra are reciprocal centimeters, with the symbol cm. Units of IR wavelength are commonly given in micrometers (formerly called "microns"), symbol μm, which are related to the wavenumber in a reciprocal way. A common laboratory instrument that uses this technique is a Fourier transform infrared (FTIR) spectrometer. Two-dimensional IR is also possible as discussed below.

The infrared portion of the electromagnetic spectrum is usually divided into three regions; the near-, mid- and far- infrared, named for their relation to the visible spectrum. The higher-energy near-IR, approximately 14,000–4,000 cm (0.7–2.5 μm wavelength) can excite overtone or combination modes of molecular vibrations. The mid-infrared, approximately 4,000–400 cm (2.5–25 μm) is generally used to study the fundamental vibrations and associated rotational–vibrational structure. The far-infrared, approximately 400–10 cm (25–1,000 μm) has low energy and may be used for rotational spectroscopy and low frequency vibrations. The region from 2–130 cm, bordering the microwave region, is considered the terahertz region and may probe intermolecular vibrations. The names and classifications of these subregions are conventions, and are only loosely based on the relative molecular or electromagnetic properties.

↓ Explore More Topics
In this Dossier

Absorbance in the context of Anisotropy

Anisotropy (/ˌænˈsɒtrəpi, ˌænɪ-/) is the structural property of non-uniformity in different directions, as opposed to isotropy. An anisotropic object or pattern has properties that differ according to direction of measurement. For example, many materials exhibit very different physical or mechanical properties when measured along different axes, e.g. absorbance, refractive index, conductivity, and tensile strength.

An example of anisotropy is light coming through a polarizer. Another is wood, which is easier to split along its grain than across it because of the directional non-uniformity of the grain (the grain is the same in one direction, not all directions).

↑ Return to Menu

Absorbance in the context of Spectral power distribution

In radiometry, photometry, and color science, a spectral power distribution (SPD) measurement describes the power per unit area per unit wavelength of an illumination (radiant exitance). More generally, the term spectral power distribution can refer to the concentration, as a function of wavelength, of any radiometric or photometric quantity (e.g. radiant energy, radiant flux, radiant intensity, radiance, irradiance, radiant exitance, radiosity, luminance, luminous flux, luminous intensity, illuminance, luminous emittance).

Knowledge of the SPD is crucial for optical-sensor system applications. Optical properties such as transmittance, reflectivity, and absorbance as well as the sensor response are typically dependent on the incident wavelength.

↑ Return to Menu

Absorbance in the context of Optical depth

In physics, optical depth or optical thickness is the natural logarithm of the ratio of incident to transmitted radiant power through a material.Thus, the larger the optical depth, the smaller the amount of transmitted radiant power through the material. Spectral optical depth or spectral optical thickness is the natural logarithm of the ratio of incident to transmitted spectral radiant power through a material. Optical depth is dimensionless, and in particular is not a length, though it is a monotonically increasing function of optical path length, and approaches zero as the path length approaches zero. The use of the term "optical density" for optical depth is discouraged.

In chemistry, a closely related quantity called "absorbance" or "decadic absorbance" is used instead of optical depth: the common logarithm of the ratio of incident to transmitted radiant power through a material. It is the optical depth divided by loge(10), because of the different logarithm bases used.

↑ Return to Menu

Absorbance in the context of Optical depth (astrophysics)

Optical depth in astrophysics refers to a specific level of transparency. Optical depth and actual depth, and respectively, can vary widely depending on the absorptivity of the astrophysical environment. Indeed, is able to show the relationship between these two quantities and can lead to a greater understanding of the structure inside a star.

Optical depth is a measure of the extinction coefficient or absorptivity up to a specific 'depth' of a star's makeup.

↑ Return to Menu

Absorbance in the context of Micro-spectrophotometry

Microspectrophotometry is the measure of the spectra of microscopic samples using different wavelengths of electromagnetic radiation (e.g. ultraviolet, visible and near infrared, etc.) It is accomplished with microspectrophotometers, cytospectrophotometers, microfluorometers, Raman microspectrophotometers, etc. A microspectrophotometer can be configured to measure transmittance, absorbance, reflectance, light polarization, fluorescence (or other types of luminescence such as photoluminescence) of sample areas less than a micrometer in diameter through a modified optical microscope.

↑ Return to Menu