Weismann barrier in the context of August Weismann


Weismann barrier in the context of August Weismann

Weismann barrier Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Weismann barrier in the context of "August Weismann"


⭐ Core Definition: Weismann barrier

The Weismann barrier, proposed by August Weismann, is the strict distinction between the "immortal" germ cell lineages producing gametes and "disposable" somatic cells in animals (but not plants), in contrast to Charles Darwin's proposed pangenesis mechanism for inheritance.

In more precise terminology, hereditary information is copied only from germline cells to somatic cells. This means that new information from somatic mutation is not passed on to the germline. This barrier concept implies that somatic mutations are not inherited.

↓ Menu
HINT:

👉 Weismann barrier in the context of August Weismann

August Friedrich Leopold Weismann (German: [ˈvaɪsman]; 17 January 1834 – 5 November 1914) was a German evolutionary biologist. Fellow German Ernst Mayr ranked him as the second most notable evolutionary theorist of the 19th century, after Charles Darwin. Weismann became the Director of the Zoological Institute and the first Professor of Zoology at Freiburg.

His main contribution involved germ plasm theory, at one time also known as Weismannism, according to which inheritance (in a multicellular animal) only takes place by means of the germ cells—the gametes such as egg cells and sperm cells. Other cells of the body—somatic cells—do not function as agents of heredity. The effect is one-way: germ cells produce somatic cells and are not affected by anything the somatic cells learn or therefore any ability an individual acquires during its life. Genetic information cannot pass from soma to germ plasm and on to the next generation. Biologists refer to this concept as the Weismann barrier. This idea, if true, rules out the inheritance of acquired characteristics as proposed by Jean-Baptiste Lamarck. However, a careful reading of Weismann's work over the span of his entire career shows that he had more nuanced views, insisting, like Darwin, that a variable environment was necessary to cause variation in the hereditary material.

↓ Explore More Topics
In this Dossier

Weismann barrier in the context of Germ-Soma Differentiation

Germ-Soma Differentiation is the process by which organisms develop distinct germline and somatic cells. The development of cell differentiation has been one of the critical aspects of the evolution of multicellularity and sexual reproduction in organisms. Multicellularity has evolved upwards of 25 times, and due to this there is great possibility that multiple factors have shaped the differentiation of cells. There are three general types of cells: germ cells, somatic cells, and stem cells. Germ cells lead to the production of gametes, while somatic cells perform all other functions within the body. Within the broad category of somatic cells, there is further specialization as cells become specified to certain tissues and functions. In addition, stem cell are undifferentiated cells which can develop into a specialized cell and are the earliest type of cell in a cell lineage. Due to the differentiation in function, somatic cells are found only in multicellular organisms, as in unicellular ones the purposes of somatic and germ cells are consolidated in one cell.

All organisms with germ-soma differentiation are eukaryotic, and represent an added level of specialization to multicellular organisms. Pure germ-soma differentiation has developed in a select number of eukaryotes (called Weismannists), included in this category are vertebrates and arthropods- however land plants, green algae, red algae, brown algae, and fungi have partial differentiation. While a significant portion of organisms with germ-soma differentiation are asexual, this distinction has been imperative in the development of sexual reproduction; the specialization of certain cells into germ cells is fundamental for meiosis and recombination.

View the full Wikipedia page for Germ-Soma Differentiation
↑ Return to Menu

Weismann barrier in the context of Gene delivery

Gene delivery is the process of introducing foreign genetic material, such as DNA or RNA, into host cells. Gene delivery must reach the genome of the host cell to induce gene expression. Successful gene delivery requires the foreign gene delivery to remain stable within the host cell and can either integrate into the genome or replicate independently of it. This requires foreign DNA to be synthesized as part of a vector, which is designed to enter the desired host cell and deliver the transgene to that cell's genome. Vectors utilized as the method for gene delivery can be divided into two categories, recombinant viruses and synthetic vectors (viral and non-viral).

In complex multicellular eukaryotes (more specifically Weissmanists), if the transgene is incorporated into the host's germline cells, the resulting host cell can pass the transgene to its progeny. If the transgene is incorporated into somatic cells, the transgene will stay with the somatic cell line, and thus its host organism.

View the full Wikipedia page for Gene delivery
↑ Return to Menu

Weismann barrier in the context of Germ plasm

Germ plasm (German: Keimplasma) is a biological concept developed in the 19th century by the German biologist August Weismann. It states that heritable information is transmitted only by germ cells in the gonads (ovaries and testes), not by somatic cells. The related idea that information cannot pass from somatic cells to the germ line, contrary to Lamarckism, is called the Weismann barrier. To some extent this theory anticipated the development of modern genetics.

View the full Wikipedia page for Germ plasm
↑ Return to Menu