Vladimir Fock in the context of Hartree–Fock method


Vladimir Fock in the context of Hartree–Fock method

Vladimir Fock Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Vladimir Fock in the context of "Hartree–Fock method"


HINT:

👉 Vladimir Fock in the context of Hartree–Fock method

In computational physics and chemistry, the Hartree–Fock (HF) method is used for approximating the wave function and the energy of a quantum many-body system in a stationary state. It is named after Douglas Hartree and Vladimir Fock.

The Hartree–Fock method often assumes that the exact -body wave function of the system can be approximated by a single Slater determinant (in the case where the particles are fermions) or by a single permanent (in the case of bosons) of spin-orbitals. By invoking the variational method, one can derive a set of coupled equations for the spin orbitals. A solution of these equations yields the Hartree–Fock wave function and energy of the system. Hartree–Fock approximation is an instance of mean-field theory, where neglecting higher-order fluctuations in order parameter allows interaction terms to be replaced with quadratic terms, obtaining exactly solvable Hamiltonians.

↓ Explore More Topics
In this Dossier

Vladimir Fock in the context of Second quantization

Second quantization, also referred to as occupation number representation, is a formalism used to describe and analyze quantum many-body systems. In quantum field theory, it is known as canonical quantization, in which the fields (typically as the wave functions of matter) are thought of as field operators, in a manner similar to how the physical quantities (position, momentum, etc.) are thought of as operators in first quantization. The key ideas of this method were introduced in 1927 by Paul Dirac, and were later developed, most notably, by Pascual Jordan and Vladimir Fock.In this approach, the quantum many-body states are represented in the Fock state basis, which are constructed by filling up each single-particle state with a certain number of identical particles. The second quantization formalism introduces the creation and annihilation operators to construct and handle the Fock states, providing useful tools to the study of the quantum many-body theory.

View the full Wikipedia page for Second quantization
↑ Return to Menu