In computational physics and chemistry, the Hartree–Fock (HF) method is used for approximating the wave function and the energy of a quantum many-body system in a stationary state. It is named after Douglas Hartree and Vladimir Fock.
The Hartree–Fock method often assumes that the exact -body wave function of the system can be approximated by a single Slater determinant (in the case where the particles are fermions) or by a single permanent (in the case of bosons) of spin-orbitals. By invoking the variational method, one can derive a set of coupled equations for the spin orbitals. A solution of these equations yields the Hartree–Fock wave function and energy of the system. Hartree–Fock approximation is an instance of mean-field theory, where neglecting higher-order fluctuations in order parameter allows interaction terms to be replaced with quadratic terms, obtaining exactly solvable Hamiltonians.
Photoluminescence (abbreviated as PL) is light emission from any form of matter after the absorption of photons (electromagnetic radiation). It is one of many forms of luminescence (light emission) and is initiated by photoexcitation (i.e. photons that excite electrons to a higher energy level in an atom), hence the prefix photo-. Following excitation, various relaxation processes typically occur in which other photons are re-radiated. Time periods between absorption and emission may vary: ranging from short femtosecond-regime for emission involving free-carrier plasma in inorganic semiconductors or metals up to milliseconds for phosphoresence processes in molecular systems; and under special circumstances delay of emission may even span to minutes or hours.
Observation of photoluminescence at a certain energy can be viewed as an indication that an electron transitioned between states separated by this transition energy. While this is generally true in atoms and similar systems, correlations and other more complex phenomena also act as sources for photoluminescence in many-body systems such as semiconductors or metals. A theoretical approach to handle this is given by the semiconductor luminescence equations.
View the full Wikipedia page for PhotoluminescenceFermi liquid theory (also known as Landau's Fermi-liquid theory) is a theoretical model of interacting fermions that describes the normal state of the conduction electrons in most metals at sufficiently low temperatures. The theory describes the behavior of many-body systems of particles in which the interactions between particles may be strong. The phenomenological theory of Fermi liquids was introduced by the Soviet physicist Lev Davidovich Landau in 1956, and later developed by Alexei Abrikosov and Isaak Khalatnikov using diagrammatic perturbation theory. The theory explains why some of the properties of an interacting fermion system are very similar to those of the ideal Fermi gas (collection of non-interacting fermions), and why other properties differ.
Fermi liquid theory applies most notably to conduction electrons in normal (non-superconducting) metals, and to liquid helium-3. Liquid helium-3 is a Fermi liquid at low temperatures (but not low enough to be in its superfluid phase). An atom of helium-3 has two protons, one neutron and two electrons, giving an odd number of fermions, so the atom itself is a fermion. Fermi liquid theory also describes the low-temperature behavior of electrons in heavy fermion materials, which are metallic rare-earth alloys having partially filled f orbitals. The effective mass of electrons in these materials is much larger than the free-electron mass because of interactions with other electrons, so these systems are known as heavy Fermi liquids. Strontium ruthenate displays some key properties of Fermi liquids, despite being a strongly correlated material that is similar to high temperature superconductors such as the cuprates. The low-momentum interactions of nucleons (protons and neutrons) in atomic nuclei are also described by Fermi liquid theory.
View the full Wikipedia page for Fermi liquidComputational chemistry is a branch of chemistry that uses computer simulations to assist in solving chemical problems. It uses methods of theoretical chemistry incorporated into computer programs to calculate the structures and properties of molecules, groups of molecules, and solids. The importance of this subject stems from the fact that, with the exception of some relatively recent findings related to the hydrogen molecular ion (dihydrogen cation), achieving an accurate quantum mechanical depiction of chemical systems analytically, or in a closed form, is not feasible. The complexity inherent in the many-body problem exacerbates the challenge of providing detailed descriptions of quantum mechanical systems. While computational results normally complement information obtained by chemical experiments, it can occasionally predict unobserved chemical phenomena.
View the full Wikipedia page for Computational chemistry