Viscosity in the context of Fluids


Viscosity in the context of Fluids

Viscosity Study page number 1 of 8

Play TriviaQuestions Online!

or

Skip to study material about Viscosity in the context of "Fluids"


⭐ Core Definition: Viscosity

When two fluid layers move relative to each other, a friction force develops between them and the slower layer acts to slow down the faster layer. This internal resistance to flow is described by the fluid property called viscosity, which reflects the internal stickiness of the fluid. In liquids, viscosity arises from cohesive molecular forces, while in gases it results from molecular collisions. Except for the case of superfluidity, there is no fluid with zero viscosity, and thus all fluid flows involve viscous effects to some degree.

For liquids, it corresponds to the informal concept of thickness; for example, syrup has a higher viscosity than water. Viscosity is defined scientifically as a force multiplied by a time divided by an area. Thus its SI units are newton-seconds per metre squared, or pascal-seconds.

↓ Menu
HINT:

In this Dossier

Viscosity in the context of Olive trees

The olive (botanical name Olea europaea, "European olive") is a species of subtropical evergreen tree in the family Oleaceae. Originating in Asia Minor, it is abundant throughout the Mediterranean Basin, with wild subspecies in Africa and western Asia; modern cultivars are traced primarily to the Near East, Aegean Sea, and Strait of Gibraltar. The olive is the type species for its genus, Olea, and lends its name to the Oleaceae plant family, which includes lilac, jasmine, forsythia, and ash. The olive fruit is classed botanically as a drupe, similar in structure and function to the cherry or peach. The term oil—now used to describe any viscous water-insoluble liquid—was originally synonymous with olive oil, the liquid fat derived from olives.

The olive has deep historical, economic, and cultural significance in the Mediterranean. It is among the oldest fruit trees domesticated by humans, being first cultivated in the Eastern Mediterranean between 6,000 and 4,000 BC, most likely in the Levant. The olive gradually disseminated throughout the Mediterranean via trade and human migration starting in the 16th century BC; it took root in Crete around 3500 BC and reached Iberia by about 1050 BC. Olive cultivation was vital to the growth and prosperity of various Mediterranean civilizations, from the Minoans and Myceneans of the Bronze Age to the Greeks and Romans of classical antiquity.

View the full Wikipedia page for Olive trees
↑ Return to Menu

Viscosity in the context of Stratovolcano

A stratovolcano, also known as a composite volcano, is a typically conical volcano built up by many alternating layers (strata) of hardened lava and tephra. Unlike shield volcanoes, stratovolcanoes are characterized by a steep profile with a summit crater and explosive eruptions. Some have collapsed summit craters called calderas. The lava flowing from stratovolcanoes typically cools and solidifies before spreading far, due to high viscosity. The magma forming this lava is often felsic, having high to intermediate levels of silica (as in rhyolite, dacite, or andesite), with lesser amounts of less viscous mafic magma. Extensive felsic lava flows are uncommon, but can travel as far as 8 kilometres (5 miles).

The term composite volcano is used because strata are usually mixed and uneven instead of neat layers. They are among the most common types of volcanoes; more than 700 stratovolcanoes have erupted lava during the Holocene Epoch (the last 11,700 years), and many older, now extinct, stratovolcanoes erupted lava as far back as Archean times. Stratovolcanoes are typically found in subduction zones but they also occur in other geological settings. Two examples of stratovolcanoes famous for catastrophic eruptions are Krakatoa in Indonesia (which erupted in 1883 claiming 36,000 lives) and Mount Vesuvius in Italy (which erupted in 79 A.D killing an estimated 2,000 people). In modern times, Mount St. Helens (1980) in Washington State, US, and Mount Pinatubo (1991) in the Philippines have erupted catastrophically, but with fewer deaths.

View the full Wikipedia page for Stratovolcano
↑ Return to Menu

Viscosity in the context of Hygroscopic

Hygroscopy is the phenomenon of attracting and holding water molecules via either absorption or adsorption from the surrounding environment, which is usually at normal or room temperature. If water molecules become suspended among the substance's molecules, adsorbing substances can become physically changed, e.g. changing in volume, boiling point, viscosity or some other physical characteristic or property of the substance. For example, a finely dispersed hygroscopic powder, such as a salt, may become clumpy over time due to collection of moisture from the surrounding environment.

Deliquescent materials are sufficiently hygroscopic that they dissolve in the water they absorb, forming an aqueous solution.

View the full Wikipedia page for Hygroscopic
↑ Return to Menu

Viscosity in the context of Fluvial sediment processes

In geography and geology, fluvial sediment processes or fluvial sediment transport are associated with rivers and streams and the deposits and landforms created by sediments. It can result in the formation of ripples and dunes, in fractal-shaped patterns of erosion, in complex patterns of natural river systems, and in the development of floodplains and the occurrence of flash floods. Sediment moved by water can be larger than sediment moved by air because water has both a higher density and viscosity. In typical rivers the largest carried sediment is of sand and gravel size, but larger floods can carry cobbles and even boulders.When the stream or rivers are associated with glaciers, ice sheets, or ice caps, the term glaciofluvial or fluvioglacial is used, as in periglacial flows and glacial lake outburst floods. Fluvial sediment processes include the motion of sediment and erosion or deposition on the river bed.

View the full Wikipedia page for Fluvial sediment processes
↑ Return to Menu

Viscosity in the context of Lava

Lava is molten or partially molten rock (magma) that has been expelled from the interior of a terrestrial planet (such as Earth) or a moon onto its surface. Lava may be erupted at a volcano or through a fracture in the crust, on land or underwater, usually at temperatures from 800 to 1,200 °C (1,470 to 2,190 °F). Lava may be erupted directly onto the land surface or onto the sea floor or it may be ejected into the atmosphere before falling back down. The solid volcanic rock resulting from subsequent cooling of the molten material is often also called lava.

A lava flow is an outpouring of lava during an effusive eruption. (An explosive eruption, by contrast, produces a mixture of volcanic ash and other fragments called tephra, not lava flows.) The viscosity of most molten lava is about that of ketchup, roughly 10,000 to 100,000 times that of water (the latter two substances measured at 25 °C (77 °F) and 1 atm). Even so, lava can flow great distances before cooling causes it to solidify, because lava exposed to air quickly develops a solid crust that insulates the remaining liquid lava, helping to keep it hot and inviscid enough to continue flowing.

View the full Wikipedia page for Lava
↑ Return to Menu

Viscosity in the context of Rhyolite

Rhyolite (/ˈr.əlt/ RY-ə-lyte) is the most silica-rich of volcanic rocks. It is generally glassy or fine-grained (aphanitic) in texture, but may be porphyritic, containing larger mineral crystals (phenocrysts) in an otherwise fine-grained groundmass. The mineral assemblage is predominantly quartz, sanidine, and plagioclase. It is the extrusive equivalent of granite.

Its high silica content makes rhyolitic magma extremely viscous. This favors explosive eruptions over effusive eruptions, so this type of magma is more often erupted as pyroclastic rock than as lava flows. Rhyolitic ash-flow tuffs are among the most voluminous of continental igneous rock formations.

View the full Wikipedia page for Rhyolite
↑ Return to Menu

Viscosity in the context of Explosive eruption

In volcanology, an explosive eruption is a volcanic eruption of the most violent type. A notable example is the 1980 eruption of Mount St. Helens. Such eruptions result when sufficient gas has dissolved under pressure within a viscous magma such that expelled lava violently froths into volcanic ash when pressure is suddenly lowered at the vent. Sometimes a lava plug will block the conduit to the summit, and when this occurs, eruptions are more violent. Explosive eruptions can expel as much as 1,000 kg (2,200 lb) per second of rocks, dust, gas and pyroclastic material, averaged over the duration of eruption, that travels at several hundred meters per second as high as 20 km (12 mi) into the atmosphere. This cloud may subsequently collapse, creating a fast-moving pyroclastic flow of hot volcanic matter.

View the full Wikipedia page for Explosive eruption
↑ Return to Menu

Viscosity in the context of Wax

Waxes are a diverse class of organic compounds that are lipophilic solids that are malleable near ambient temperatures. They include higher alkanes and lipids, typically with melting points above about 40 °C (104 °F), melting to give low viscosity liquids. Waxes are insoluble in water but soluble in nonpolar organic solvents such as hexane, benzene and chloroform. Natural waxes of various types are produced by plants and animals and occur in petroleum.

View the full Wikipedia page for Wax
↑ Return to Menu

Viscosity in the context of Heating oil

Heating oil is any petroleum product or other oil used for heating; it is a fuel oil. Most commonly, it refers to low viscosity grades of fuel oil used for furnaces or boilers for home heating and in other buildings. Home heating oil is often abbreviated as HHO.

Most heating oil products are chemically very similar to diesel fuel used as motor fuel; motor fuel is typically subject to higher fuel taxes. Many countries add fuel dyes to heating oil, allowing law enforcement to check if a driver is evading fuel taxes. Since 2002, Solvent Yellow 124 has been added as a "Euromarker" in the European Union; untaxed diesel is known as "red diesel" in the United Kingdom.

View the full Wikipedia page for Heating oil
↑ Return to Menu

Viscosity in the context of Superfluidity

Superfluidity is the characteristic property of a fluid with zero viscosity which therefore flows without any loss of kinetic energy. When stirred, a superfluid forms vortices that continue to rotate indefinitely. Superfluidity occurs in two isotopes of helium (helium-3 and helium-4) when they are liquefied by cooling to cryogenic temperatures. It is also a property of various other exotic states of matter theorized to exist in astrophysics, high-energy physics, and theories of quantum gravity. The semi-phenomenological theory of superfluidity was developed by Soviet theoretical physicists Lev Landau and Isaak Khalatnikov.

Superfluidity often co-occurs with Bose–Einstein condensation, but neither phenomenon is directly related to the other; not all Bose–Einstein condensates can be regarded as superfluids, and not all superfluids are Bose–Einstein condensates. Even when superfluidity and condensation co-occur, their magnitudes are not linked: at low temperature, liquid helium has a large superfluid fraction but a low condensate fraction; while a weakly interacting BEC, with almost unity condensate fraction, can display a vanishing superfluid fraction.

View the full Wikipedia page for Superfluidity
↑ Return to Menu

Viscosity in the context of Fluid

In physics, a fluid is a liquid, gas, or other material that may continuously move and deform (flow) under an applied shear stress, or external force. They have zero shear modulus, or, in simpler terms, are substances which cannot resist any shear force applied to them.

Although the term fluid generally includes both the liquid and gas phases, its definition varies among branches of science. Definitions of solid vary as well, and depending on field, some substances can have both fluid and solid properties. Non-Newtonian fluids like Silly Putty appear to behave similar to a solid when a sudden force is applied. Substances with a very high viscosity such as pitch appear to behave like a solid (see pitch drop experiment) as well. In particle physics, the concept is extended to include fluidic matters other than liquids or gases. A fluid in medicine or biology refers to any liquid constituent of the body (body fluid), whereas "liquid" is not used in this sense. Sometimes liquids given for fluid replacement, either by drinking or by injection, are also called fluids (e.g. "drink plenty of fluids"). In hydraulics, fluid is a term which refers to liquids with certain properties, and is broader than (hydraulic) oils.

View the full Wikipedia page for Fluid
↑ Return to Menu

Viscosity in the context of Physical property

A physical property is any property of a physical system that is measurable. The changes in the physical properties of a system can be used to describe its changes between momentary states. A quantifiable physical property is called physical quantity. Measurable physical quantities are often referred to as observables. Some physical properties are qualitative, such as shininess, brittleness, etc.; some general qualitative properties admit more specific related quantitative properties, such as in opacity, hardness, ductility, viscosity, etc.

Physical properties are often characterized as intensive and extensive properties. An intensive property does not depend on the size or extent of the system, nor on the amount of matter in the object, while an extensive property shows an additive relationship. These classifications are in general only valid in cases when smaller subdivisions of the sample do not interact in some physical or chemical process when combined.

View the full Wikipedia page for Physical property
↑ Return to Menu

Viscosity in the context of Bitumen

Bitumen (UK: /ˈbɪʊmɪn/ BIH-chuum-in, US: /bɪˈtjmɪn, b-/ bih-TEW-min, by-) is an immensely viscous constituent of petroleum. Depending on its exact composition, it can be a sticky, black liquid or an apparently solid mass that behaves as a liquid over very large time scales. In American English, the material is commonly referred to as asphalt. Whether found in natural deposits or refined from petroleum, the substance is classed as a pitch. Prior to the 20th century, the term asphaltum was in general use. The word derives from the Ancient Greek word ἄσφαλτος (ásphaltos), which referred to natural bitumen or pitch. The largest natural deposit of bitumen in the world is the Pitch Lake of southwest Trinidad, which is estimated to contain 10 million tons.

About 70% of annual bitumen production is destined for road construction, its primary use. In this application, bitumen is used to bind aggregate particles like gravel and forms a substance referred to as asphalt concrete, which is colloquially termed asphalt. Its other main uses lie in bituminous waterproofing products, such as roofing felt and roof sealant.

View the full Wikipedia page for Bitumen
↑ Return to Menu

Viscosity in the context of Gum arabic

Gum arabic (gum acacia, gum sudani, Senegal gum and by other names) is a tree gum exuded by two species of Acacia sensu lato: Senegalia senegal, and Vachellia seyal. However, the term "gum arabic" does not indicate a particular botanical source. The gum is harvested commercially from wild trees, mostly in Sudan (about 70% of the global supply) and throughout the Sahel, from Senegal to Somalia. The name "gum Arabic" (al-samgh al-'arabi) was used in the Middle East at least as early as the 9th century. Gum arabic first found its way to Europe via Arabic ports and retained its name of origin.

Gum arabic is a complex mixture of glycoproteins and polysaccharides, predominantly polymers of arabinose and galactose. It is soluble in water, edible, and used primarily in the food industry and soft drink industry as a stabilizer, with E number E414 (I414 in the US). Gum arabic is a key ingredient in traditional lithography and is used in printing, paints, glues, cosmetics, and various industrial applications, including viscosity control in inks and in textile industries.

View the full Wikipedia page for Gum arabic
↑ Return to Menu

Viscosity in the context of Rollerball pen

Roller ball pens or roll pens are pens which use ball-point writing mechanisms with water-based liquid or gelled ink, as opposed to the oil-based viscous inks found in ballpoint pens. These less viscous inks, which tend to saturate more deeply and more widely into paper than other types of ink, give roller ball pens their distinctive writing qualities. The writing point is a tiny ball, usually 0.5 or 0.7 mm in diameter, that transfers the ink from the reservoir onto the paper as the pen moves.

View the full Wikipedia page for Rollerball pen
↑ Return to Menu

Viscosity in the context of Melting

Melting, or fusion, is a physical process that results in the phase transition of a substance from a solid to a liquid. This occurs when the internal energy of the solid increases, typically by the application of heat or pressure, which increases the substance's temperature to the melting point. At the melting point, the ordering of ions or molecules in the solid breaks down to a less ordered state, and the solid melts to become a liquid.

Substances in the molten state generally have reduced viscosity as the temperature increases. An exception to this principle is elemental sulfur, whose viscosity increases in the range of 130 °C to 190 °C due to polymerization.

View the full Wikipedia page for Melting
↑ Return to Menu

Viscosity in the context of Kinetic theory of gases

The kinetic theory of gases is a simple classical model of the thermodynamic behavior of gases. Its introduction allowed many principal concepts of thermodynamics to be established. It treats a gas as composed of numerous particles, too small to be seen with a microscope, in constant, random motion. These particles are now known to be the atoms or molecules of the gas. The kinetic theory of gases uses their collisions with each other and with the walls of their container to explain the relationship between the macroscopic properties of gases, such as volume, pressure, and temperature, as well as transport properties such as viscosity, thermal conductivity and mass diffusivity.

The basic version of the model describes an ideal gas. It treats the collisions as perfectly elastic and as the only interaction between the particles, which are additionally assumed to be much smaller than their average distance apart.

View the full Wikipedia page for Kinetic theory of gases
↑ Return to Menu