Hydraulic fluid in the context of "Fluid"

⭐ In the context of hydraulics, fluid is considered…

Ad spacer

⭐ Core Definition: Hydraulic fluid

A hydraulic fluid or hydraulic liquid is the medium by which power is transferred in hydraulic machinery. Common hydraulic fluids are based on mineral oil or water. Examples of equipment that might use hydraulic fluids are excavators and backhoes, hydraulic brakes, power steering systems, automatic transmissions, garbage trucks, aircraft flight control systems, lifts, and industrial machinery.

Hydraulic systems like the ones mentioned above will work most efficiently if the hydraulic fluid used has zero compressibility.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

πŸ‘‰ Hydraulic fluid in the context of Fluid

In physics, a fluid is a liquid, gas, or other material that may continuously move and deform (flow) under an applied shear stress, or external force. They have zero shear modulus, or, in simpler terms, are substances which cannot resist any shear force applied to them.

Although the term fluid generally includes both the liquid and gas phases, its definition varies among branches of science. Definitions of solid vary as well, and depending on field, some substances can have both fluid and solid properties. Non-Newtonian fluids like Silly Putty appear to behave similar to a solid when a sudden force is applied. Substances with a very high viscosity such as pitch appear to behave like a solid (see pitch drop experiment) as well. In particle physics, the concept is extended to include fluidic matters other than liquids or gases. A fluid in medicine or biology refers to any liquid constituent of the body (body fluid), whereas "liquid" is not used in this sense. Sometimes liquids given for fluid replacement, either by drinking or by injection, are also called fluids (e.g. "drink plenty of fluids"). In hydraulics, fluid is a term which refers to liquids with certain properties, and is broader than (hydraulic) oils.

↓ Explore More Topics
In this Dossier

Hydraulic fluid in the context of Actuator

An actuator is a component of a machine that produces force, torque, or displacement, when an electrical, pneumatic or hydraulic input is supplied to it in a system (called an actuating system). The effect is usually produced in a controlled way. An actuator translates a stimulus such as an input signal into the required form of mechanical energy. It is a type of transducer. In simple terms, it is a "mover".

An actuator requires a control device (which provides control signal) and a source of energy. The control signal is relatively low in energy and may be voltage, electric current, pneumatic, or hydraulic fluid pressure, or even human power. In the electric, hydraulic, and pneumatic sense, it is a form of automation or automatic control.

↑ Return to Menu

Hydraulic fluid in the context of Working fluid

For fluid power, a working fluid is a gas or liquid that primarily transfers force, motion, or mechanical energy. In hydraulics, water or hydraulic fluid transfers force between hydraulic components such as hydraulic pumps, hydraulic cylinders, and hydraulic motors that are assembled into hydraulic machinery, hydraulic drive systems, etc. In pneumatics, the working fluid is air or another gas which transfers force between pneumatic components such as compressors, vacuum pumps, pneumatic cylinders, and pneumatic motors. In pneumatic systems, the working gas also stores energy because it is compressible. (Gases also heat up as they are compressed and cool as they expand. Some gases also condense into liquids as they are compressed and boil as pressure is reduced.)

For passive heat transfer, a working fluid is a gas or liquid, usually called a coolant or heat transfer fluid, that primarily transfers heat into or out of a region of interest by conduction, convection, and/or forced convection (pumped liquid cooling, air cooling, etc.).

↑ Return to Menu

Hydraulic fluid in the context of Moving parts

Machines include both fixed and moving parts. The moving parts have controlled and constrained motions.

The term excludes fluids that pass through the machine, such as fuel, coolant or hydraulic fluid, as well as mechanical parts (such as locks, switches, nuts, bolts, and screw caps for bottles) which are moved only to reconfigure the machine. A system with no moving parts is described as "solid state".

↑ Return to Menu

Hydraulic fluid in the context of Excavator

Excavators are heavy construction equipment primarily consisting of a boom, dipper (or stick), bucket, and cab on a rotating platform known as the "house".

The modern excavator's house sits atop an undercarriage with tracks or wheels, being an evolution of the steam shovel (which itself evolved into the power shovel when steam was replaced by diesel and electric power). All excavation-related movement and functions of a hydraulic excavator are accomplished through the use of hydraulic fluid, with hydraulic cylinders and hydraulic motors, which replaced winches, chains, and steel ropes (utilized by dragline excavators). Another principle change was the direction of the digging action, with modern excavators pulling their buckets toward them like a dragline rather than pushing them away to fill them the way the first powered shovels did.

↑ Return to Menu

Hydraulic fluid in the context of SpaceX Merlin

Merlin is a family of rocket engines developed by SpaceX. They are currently a part of the Falcon 9 and Falcon Heavy launch vehicles, and were formerly used on the Falcon 1. Merlin engines use RP-1 and liquid oxygen as rocket propellants in a gas-generator power cycle. The Merlin engine was originally designed for sea recovery and reuse, but since 2016 the entire Falcon 9 booster is recovered for reuse by landing vertically on a landing pad using one of its nine Merlin engines.

The injector at the heart of Merlin is of the pintle type that was first used in the Apollo Lunar Module landing engine (LMDE). Propellants are fed by a single-shaft, dual-impeller turbopump. The turbopump also provides high-pressure fluid for the hydraulic actuators, which then recycles into the low-pressure inlet. This eliminates the need for a separate hydraulic drive system and means that thrust vectoring control failure by running out of hydraulic fluid is not possible. The engine is named after Merlin (a falcon).

↑ Return to Menu

Hydraulic fluid in the context of Hydraulic motor

A hydraulic motor is a mechanical actuator that converts hydraulic pressure and flow into torque and angular displacement (rotation). The hydraulic motor is the rotary counterpart of the hydraulic cylinder as a linear actuator. Most broadly, the category of devices called hydraulic motors has sometimes included those that run on hydropower (namely, water engines and water motors) but in today's terminology the name usually refers more specifically to motors that use hydraulic fluid as part of closed hydraulic circuits in modern hydraulic machinery.

Conceptually, a hydraulic motor should be interchangeable with a hydraulic pump because it performs the opposite function – similar to the way a DC electric motor is theoretically interchangeable with a DC electrical generator. However, many hydraulic pumps cannot be used as hydraulic motors because they cannot be backdriven. Also, a hydraulic motor is usually designed for working pressure at both sides of the motor, whereas most hydraulic pumps rely on low pressure provided from the reservoir at the input side and would leak fluid when abused as a motor.

↑ Return to Menu