Uranium enrichment in the context of "Breeder reactors"

Play Trivia Questions online!

or

Skip to study material about Uranium enrichment in the context of "Breeder reactors"

Ad spacer

⭐ Core Definition: Uranium enrichment

Enriched uranium is a type of uranium in which the percent composition of uranium-235 (written U) has been increased through the process of isotope separation. Naturally occurring uranium is composed of three major isotopes: uranium-238 (U with 99.2732–99.2752% natural abundance), uranium-235 (U, 0.7198–0.7210%), and uranium-234 (U, 0.0049–0.0059%). U is the only nuclide existing in nature (in any appreciable amount) that is fissile with thermal neutrons.

Enriched uranium is a critical component for both civil nuclear power generation and military nuclear weapons. Low-enriched uranium (below 20% U) is necessary to operate light water reactors, which make up almost 90% of nuclear electricity generation. Highly enriched uranium (above 20% U) is used for the cores of many nuclear weapons, as well as compact reactors for naval propulsion and research, as well as breeder reactors. There are about 2,000 tonnes of highly enriched uranium in the world.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Uranium enrichment in the context of Uranium

Uranium is a chemical element; it has symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium radioactively decays, usually by emitting an alpha particle. The half-life of this decay varies between 159,200 and 4.5 billion years for different isotopes, making them useful for dating the age of the Earth. The most common isotopes in natural uranium are uranium-238 (which has 146 neutrons and accounts for over 99% of uranium on Earth) and uranium-235 (which has 143 neutrons). Uranium has the highest atomic weight of the primordially occurring elements. Its density is about 70% higher than that of lead and slightly lower than that of gold or tungsten. It occurs naturally in low concentrations of a few parts per million in soil, rock and water, and is commercially extracted from uranium-bearing minerals such as uraninite.

Many contemporary uses of uranium exploit its unique nuclear properties. Uranium is used in nuclear power plants and nuclear weapons because it is the only naturally occurring element with a fissile isotope – uranium-235 – present in non-trace amounts. However, because of the low abundance of uranium-235 in natural uranium (which is overwhelmingly uranium-238), uranium needs to undergo enrichment so that enough uranium-235 is present. Uranium-238 is fissionable by fast neutrons and is fertile, meaning it can be transmuted to fissile plutonium-239 in a nuclear reactor. Another fissile isotope, uranium-233, can be produced from natural thorium and is studied for future industrial use in nuclear technology. Uranium-238 has a small probability for spontaneous fission or even induced fission with fast neutrons; uranium-235, and to a lesser degree uranium-233, have a much higher fission cross-section for slow neutrons. In sufficient concentration, these isotopes maintain a sustained nuclear chain reaction. This generates the heat in nuclear power reactors and produces the fissile material for nuclear weapons. The primary civilian use for uranium harnesses the heat energy to produce electricity. Depleted uranium (U) is used in kinetic energy penetrators and armor plating.

↑ Return to Menu

Uranium enrichment in the context of Willard Libby

Willard Frank Libby (December 17, 1908 – September 8, 1980) was an American physical chemist noted for his role in the 1949 development of radiocarbon dating, a process which revolutionized archaeology and palaeontology. For his contributions to the team that developed this process, Libby was awarded the Nobel Prize in Chemistry in 1960.

A 1931 chemistry graduate of the University of California, Berkeley, from which he received his doctorate in 1933, he studied radioactive elements and developed sensitive Geiger counters to measure weak natural and artificial radioactivity. During World War II he worked in the Manhattan Project's Substitute Alloy Materials (SAM) Laboratories at Columbia University, developing the gaseous diffusion process for uranium enrichment.

↑ Return to Menu

Uranium enrichment in the context of Fast reactor

A fast-neutron reactor (FNR) or fast-spectrum reactor or simply a fast reactor is a category of nuclear reactor in which the fission chain reaction is sustained by fast neutrons (carrying energies above 1 MeV, on average), as opposed to slow thermal neutrons used in thermal-neutron reactors. Such a fast reactor needs no neutron moderator, but requires fuel that is comparatively rich in fissile material.

The fast spectrum is key to breeder reactors, which convert highly abundant uranium-238 into fissile plutonium-239, without requiring enrichment. It also leads to high burnup: many transuranic isotopes, such as of americium and curium, accumulate in thermal reactor spent fuel; in fast reactors they undergo fast fission, reducing total nuclear waste. As a strong fast-spectrum neutron source, they can also be used to transmute existing nuclear waste into manageable or non-radioactive isotopes.

↑ Return to Menu

Uranium enrichment in the context of Uranium mining

Uranium mining is the process of extraction of uranium ore from the earth. Almost 50,000 tons of uranium were produced in 2022. Kazakhstan, Canada, and Namibia were the top three uranium producers, respectively, and together account for 69% of world production. Other countries producing more than 1,000 tons per year included Australia, Niger, Russia, Uzbekistan and China. Nearly all of the world's mined uranium is used to power nuclear power plants. Historically uranium was also used in applications such as uranium glass or ferrouranium but those applications have declined due to the radioactivity and toxicity of uranium and are nowadays mostly supplied with a plentiful cheap supply of depleted uranium which is also used in uranium ammunition. In addition to being cheaper, depleted uranium is also less radioactive due to a lower content of short-lived
U
and
U
than natural uranium.

Uranium is mined by in-situ leaching (57% of world production) or by conventional underground or open-pit mining of ores (43% of production). During in-situ mining, a leaching solution is pumped down drill holes into the uranium ore deposit where it dissolves the ore minerals. The uranium-rich fluid is then pumped back to the surface and processed to extract the uranium compounds from solution. In conventional mining, ores are processed by grinding the ore materials to a uniform particle size and then treating the ore to extract the uranium by chemical leaching. The milling process commonly yields dry powder-form material consisting of natural uranium, "yellowcake", which is nowadays commonly sold on the uranium market as U3O8. While some nuclear power plants – most notably heavy water reactors like the CANDU – can operate with natural uranium (usually in the form of uranium dioxide), the vast majority of commercial nuclear power plants and many research reactors require uranium enrichment, which raises the content of
U
from the natural 0.72% to 3–5% (for use in light water reactors) or even higher, depending on the application. Enrichment requires conversion of the yellowcake into uranium hexafluoride and production of the fuel (again usually uranium dioxide, but sometimes uranium carbide, uranium hydride or uranium nitride) from that feedstock.

↑ Return to Menu

Uranium enrichment in the context of Fordow Fuel Enrichment Plant

The Fordow Uranium Enrichment Plant, officially the Shahid Ali Mohammadi Nuclear Facility (Persian: تأسیسات هسته‌ای شهید علی‌محمدی), is an Iranian underground uranium enrichment facility located 30 kilometres (20 mi) north of the Iranian city of Qom, at a former Islamic Revolutionary Guard Corps base. The site is under the control of the Atomic Energy Organization of Iran (AEOI). It is the second Iranian uranium enrichment facility, the other being the Natanz Nuclear Facility.

Under the Joint Comprehensive Plan of Action effective January 2016, Fordow was to cease uranium enrichment for 15 years, and carry out civilian research and production.

↑ Return to Menu