Primordial nuclide in the context of "Uranium enrichment"

Play Trivia Questions online!

or

Skip to study material about Primordial nuclide in the context of "Uranium enrichment"

Ad spacer

⭐ Core Definition: Primordial nuclide

In geochemistry, geophysics and nuclear physics, primordial nuclides, or primordial isotopes, are nuclides found on Earth that have existed in their current form since before Earth was formed. Primordial nuclides were present in the interstellar medium from which the Solar System was formed, and were formed in the Big Bang, by nucleosynthesis in stars and supernovae followed by mass ejection, by cosmic ray spallation, or from other processes throughout the history of the universe. They are the stable nuclides plus the fraction of the long-lived radionuclides surviving from the primordial solar nebula through planet accretion until the present; 286 such nuclides are known.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Primordial nuclide in the context of Uranium

Uranium is a chemical element; it has symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium radioactively decays, usually by emitting an alpha particle. The half-life of this decay varies between 159,200 and 4.5 billion years for different isotopes, making them useful for dating the age of the Earth. The most common isotopes in natural uranium are uranium-238 (which has 146 neutrons and accounts for over 99% of uranium on Earth) and uranium-235 (which has 143 neutrons). Uranium has the highest atomic weight of the primordially occurring elements. Its density is about 70% higher than that of lead and slightly lower than that of gold or tungsten. It occurs naturally in low concentrations of a few parts per million in soil, rock and water, and is commercially extracted from uranium-bearing minerals such as uraninite.

Many contemporary uses of uranium exploit its unique nuclear properties. Uranium is used in nuclear power plants and nuclear weapons because it is the only naturally occurring element with a fissile isotope – uranium-235 – present in non-trace amounts. However, because of the low abundance of uranium-235 in natural uranium (which is overwhelmingly uranium-238), uranium needs to undergo enrichment so that enough uranium-235 is present. Uranium-238 is fissionable by fast neutrons and is fertile, meaning it can be transmuted to fissile plutonium-239 in a nuclear reactor. Another fissile isotope, uranium-233, can be produced from natural thorium and is studied for future industrial use in nuclear technology. Uranium-238 has a small probability for spontaneous fission or even induced fission with fast neutrons; uranium-235, and to a lesser degree uranium-233, have a much higher fission cross-section for slow neutrons. In sufficient concentration, these isotopes maintain a sustained nuclear chain reaction. This generates the heat in nuclear power reactors and produces the fissile material for nuclear weapons. The primary civilian use for uranium harnesses the heat energy to produce electricity. Depleted uranium (U) is used in kinetic energy penetrators and armor plating.

↑ Return to Menu

Primordial nuclide in the context of Helium-3

Helium-3 (He see also helion) is a light, stable isotope of helium with two protons and one neutron. (In contrast, the most common isotope, helium-4, has two protons and two neutrons.) Helium-3 and hydrogen-1 are the only stable nuclides with more protons than neutrons. It was discovered in 1939. Helium-3 atoms are fermionic and become a superfluid at the temperature of 2.491 mK.

Helium-3 occurs as a primordial nuclide, escaping from Earth's crust into its atmosphere and into outer space over millions of years. It is also thought to be a natural nucleogenic and cosmogenic nuclide, one produced when lithium is bombarded by natural neutrons, which can be released by spontaneous fission and by nuclear reactions with cosmic rays. Some found in the terrestrial atmosphere is a remnant of atmospheric and underwater nuclear weapons testing.

↑ Return to Menu

Primordial nuclide in the context of Aluminium-26

Aluminium-26 (Al, Al-26) is a radioactive isotope of the chemical element aluminium, decaying by either positron emission or electron capture to stable magnesium-26. The half-life of Al is 717,000 years. This is far too short for the isotope to survive as a primordial nuclide, but a small amount of it is produced by collisions of atoms with cosmic ray protons.

Decay of aluminium-26 also produces gamma rays and X-rays. The x-rays and Auger electrons are emitted by the excited atomic shell of the daughter Mg after the electron capture which typically leaves a hole in one of the lower sub-shells.

↑ Return to Menu

Primordial nuclide in the context of Enriched uranium

Enriched uranium is a type of uranium in which the percent composition of uranium-235 (written U) has been increased through the process of isotope separation. Naturally occurring uranium is composed of three major isotopes: uranium-238 (U with 99.2732–99.2752% natural abundance), uranium-235 (U, 0.7198–0.7210%), and uranium-234 (U, 0.0049–0.0059%). U is the only nuclide existing in nature (in any appreciable amount) that is fissile with thermal neutrons.

Enriched uranium is a critical component for both civil nuclear power generation and military nuclear weapons. Low-enriched uranium (below 20% U) is necessary to operate light water reactors, which make up almost 90% of nuclear electricity generation. Highly enriched uranium (above 20% U) is used for the cores of many nuclear weapons, as well as compact reactors for naval propulsion and research, as well as breeder reactors. There are about 2,000 tonnes of highly enriched uranium in the world.

↑ Return to Menu

Primordial nuclide in the context of Uranium-235

Uranium-235 (
U
or U-235) is an isotope of uranium making up about 0.72% of natural uranium. Unlike the predominant isotope uranium-238, it is fissile, i.e., it can sustain a nuclear chain reaction. It is the only fissile isotope that exists in nature as a primordial nuclide.

Uranium-235 has a half-life of 704 million years. It was discovered in 1935 by Arthur Jeffrey Dempster. Its fission cross section for slow thermal neutrons is about 584.3±1 barns. For fast neutrons it is on the order of 1 barn.Most neutron absorptions induce fission, though a minority (about 15%) result in the formation of uranium-236.

↑ Return to Menu

Primordial nuclide in the context of Bismuth-209

Bismuth-209 (Bi) is an isotope of bismuth with the longest known half-life of any nuclide that undergoes α-decay (alpha decay); the decay product is thallium-205. It has 83 protons and a magic number of 126 neutrons, and naturally-occurring bismuth consists entirely of this isotope.

↑ Return to Menu

Primordial nuclide in the context of Thorium

Thorium is a chemical element; it has symbol Th and atomic number 90. Thorium is a weakly radioactive light silver metal which tarnishes olive grey when it is exposed to air, forming thorium dioxide; it is moderately soft, malleable, and has a high melting point. Thorium is an electropositive actinide whose chemistry is dominated by the +4 oxidation state; it is quite reactive and can ignite in air when finely divided.

All known thorium isotopes are unstable. The most stable isotope, Th, has a half-life of 14.0 billion years, or about the age of the universe; it decays very slowly via alpha decay, starting a decay chain named the thorium series that ends at stable Pb. On Earth, thorium and uranium are the only elements with no stable or nearly-stable isotopes that still occur naturally in large quantities as primordial elements. Thorium is estimated to be over three times as abundant as uranium in the Earth's crust, and is chiefly refined from monazite sands as a by-product of extracting rare-earth elements.

↑ Return to Menu