Ultramafic in the context of "Mount Olympus (Cyprus)"

Play Trivia Questions online!

or

Skip to study material about Ultramafic in the context of "Mount Olympus (Cyprus)"

Ad spacer

⭐ Core Definition: Ultramafic

Ultramafic rocks (also referred to as ultrabasic rocks, although the terms are not wholly equivalent) are igneous and meta-igneous rocks with a very low silica content (less than 45%), generally >18% MgO, high FeO, low potassium, and are usually composed of greater than 90% mafic minerals (dark colored, high magnesium and iron content). Earth's mantle is composed of ultramafic rocks. Ultrabasic is a more inclusive term that includes igneous rocks with low silica content that may not be extremely enriched in Fe and Mg, such as carbonatites and ultrapotassic igneous rocks.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Ultramafic in the context of Nuvvuagittuq Belt

The Nuvvuagittuq Greenstone Belt (NGB; Inuktitut: [nuv.vu.a.git.tuq]) is a sequence of metamorphosed mafic to ultramafic volcanic and associated sedimentary rocks (a greenstone belt) located on the eastern shore of Hudson Bay, 40 km southeast of Inukjuak, Quebec. These rocks have undergone extensive metamorphism, and represent some of the oldest surface rocks on Earth.

The age of the Nuvvuagittuq Greenstone Belt is still subject to debate. One 2007 paper gave an age of c. 3,750 million years (Ma), while another in 2012 gave an age of c. 4,388 Ma. Research published in June 2025 established an age of 4157 Ma for a gabbroic dike cross-cutting the Ujaraaluk unit.

↑ Return to Menu

Ultramafic in the context of Lower oceanic crust

The lower oceanic crust is the lower part of the oceanic crust and represents the major part of it (the largest part by volume). It is generally located 4–8 km below the ocean floor and the major lithologies are mafic (ultramafic and gabbroic rocks) which derive from melts rising from the Earth's mantle. This part of the oceanic crust is an important zone for processes such as melt accumulation and melt modification (fractional crystallisation and crustal assimilation). The recycling of this part of the oceanic crust, together with the upper mantle has been suggested as a significant source component for tholeiitic magmas in Hawaiian volcanoes. Although the lower oceanic crust builds the link between the mantle and the MORB, and can't be neglected for the understanding of MORB evolution, the complex processes operating in this zone remain unclear and there is an ongoing debate in Earth Sciences about this. It is 6KM long.

↑ Return to Menu

Ultramafic in the context of Peridotite

Peridotite (US: /ˈpɛrɪdˌtt, pəˈrɪdə-/ PERR-ih-doh-tyte, pə-RID-ə-) is a dense, phaneritic (coarse-grained) igneous rock consisting mostly of the silicate minerals olivine and pyroxene. Peridotite is ultramafic, as the rock contains less than 45% silica. It is high in magnesium (Mg), reflecting the high proportions of magnesium-rich olivine, with appreciable iron. Peridotite is derived from Earth's mantle, either as solid blocks and fragments, or as crystals accumulated from magmas that formed in the mantle. The compositions of peridotites from these layered igneous complexes vary widely, reflecting the relative proportions of pyroxenes, chromite, plagioclase, and amphibole.

Peridotite is the dominant rock of the upper part of Earth's mantle. The compositions of peridotite nodules found in certain basalts are of special interest along with diamond pipes (kimberlite), because they provide samples of Earth's mantle brought up from depths ranging from about 30 km to 200 km or more. Some of the nodules preserve isotope ratios of osmium and other elements that record processes that occurred when Earth was formed, and so they are of special interest to paleogeologists because they provide clues to the early composition of Earth's mantle and the complexities of the processes that occurred.

↑ Return to Menu

Ultramafic in the context of Phenocryst

A phenocryst is an early forming, relatively large and usually conspicuous crystal distinctly larger than the grains of the rock groundmass of an igneous rock. Such rocks that have a distinct difference in the size of the crystals are called porphyries, and the adjective porphyritic is used to describe them. Phenocrysts often have euhedral forms, either due to early growth within a magma, or by post-emplacement recrystallization. Normally the term phenocryst is not used unless the crystals are directly observable, which is sometimes stated as greater than 0.5 mm (0.020 in) in diameter. Phenocrysts below this level, but still larger than the groundmass crystals, are termed microphenocrysts. Very large phenocrysts are termed megaphenocrysts. Some rocks contain both microphenocrysts and megaphenocrysts. In metamorphic rocks, crystals similar to phenocrysts are called porphyroblasts.

Phenocrysts are more often found in the lighter (higher silica) igneous rocks such as felsites and andesites, although they occur throughout the igneous spectrum including in the ultramafics. The largest crystals found in some pegmatites are often phenocrysts being significantly larger than the other minerals.

↑ Return to Menu

Ultramafic in the context of Layered intrusion

A layered intrusion is a large sill-like body of igneous rock which exhibits vertical layering or differences in composition and texture. These intrusions can be many kilometres in area covering from around 100 km (39 sq mi) to over 50,000 km (19,000 sq mi) and several hundred metres to over one kilometre (3,300 ft) in thickness. While most layered intrusions are Archean to Proterozoic in age (for example, the Paleoproterozoic Bushveld complex), they may be any age such as the Cenozoic Skaergaard intrusion of east Greenland or the Rum layered intrusion in Scotland. Although most are ultramafic to mafic in composition, the Ilimaussaq intrusive complex of Greenland is an alkalic intrusion.

Layered intrusions are typically found in ancient cratons and are rare but worldwide in distribution. The intrusive complexes exhibit evidence of fractional crystallization and crystal segregation by settling or floating of minerals from a melt.

↑ Return to Menu

Ultramafic in the context of Lizardite

Lizardite is a mineral from the serpentine subgroup with formula Mg3(Si2O5)(OH)4, and the most common type of mineral in the subgroup. It is also a member of the kaolinite-serpentine group.

Lizardite may form a solid-solution series with the nickel-bearing népouite (pure end-member: Ni3(Si2O5)(OH)4). Intermediate compositions (Mg,Ni)3(Si2O5)(OH)4 are possible, with varying proportions of magnesium and nickel. However, the lizardite end-member is much more common than pure népouite, a relatively rare mineral most often formed by the alteration of ultramafic rocks.

↑ Return to Menu

Ultramafic in the context of Volcanic belt

A volcanic belt is a large volcanically active region. Other terms are used for smaller areas of activity, such as volcanic fields or volcanic systems. Volcanic belts are found above zones of unusually high temperature (700 to 1,400 °C (1,292 to 2,552 °F)) where magma is created by partial melting of solid material in the Earth's crust and upper mantle. These areas usually form along tectonic plate boundaries at depths of 10 to 50 kilometres (6.2 to 31.1 mi). For example, volcanoes in Mexico and western North America are mostly in volcanic belts, such as the Trans-Mexican Volcanic Belt that extends 900 kilometres (560 mi) from west to east across central-southern Mexico and the Northern Cordilleran Volcanic Province in western Canada. In the case of Iceland, the geologist G.G. Bárdarson in 1929 identified clusters of volcanic belts while studying the Reykjanes Peninsula.

The deeply deformed and eroded remnants of ancient volcanic belts are found in volcanically inactive regions such as the Canadian Shield. It contains over 150 volcanic belts (now deformed and eroded down to nearly flat plains) that range from 600 to 1,200 million years old. These are zones of variably metamorphosed mafic to ultramafic volcanic sequences with associated sedimentary rocks that form what are known as greenstone belts. They are thought to have formed at ancient oceanic spreading centers and island arc terranes. The Abitibi greenstone belt in Ontario and Quebec, Canada is one of the world's largest greenstone belts.

↑ Return to Menu

Ultramafic in the context of Greenstone belt

Greenstone belts are zones of variably metamorphosed mafic to ultramafic volcanic sequences with associated sedimentary rocks that occur within Archaean and Proterozoic cratons between granite and gneiss bodies.

The name comes from the green hue imparted by the colour of the metamorphic minerals within the mafic rocks: The typical green minerals are chlorite, actinolite, and other green amphiboles. Greenstone belts also often contain ore deposits of gold, silver, copper, zinc, and lead.

↑ Return to Menu