True north in the context of "Compass"

⭐ In the context of a compass, true north is considered…

Ad spacer

⭐ Core Definition: True north

True north is the direction along Earth's surface towards the place where the imaginary rotational axis of the Earth intersects the surface of the Earth on its northern half, the True North Pole. True south is the direction opposite to the true north.

It is important to make the distinction from magnetic north, which points towards an ever changing location close to the True North Pole determined by Earth's magnetic field. Due to fundamental limitations in map projection, true north also differs from the grid north which is marked by the direction of the grid lines on a typical printed map. However, the longitude lines on a globe lead to the true poles, because the three-dimensional representation avoids those limitations.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 True north in the context of Compass

A compass is a device that shows the cardinal directions used for navigation and geographic orientation. It typically consists of a magnetized needle or another element, such as a compass card or compass rose, that pivots to align itself with magnetic north. Other methods may be used, including gyroscopes, magnetometers, and GPS receivers.

Compasses often show angles in degrees: north corresponds to 0°, and the angles increase clockwise, so east is 90°, south is 180°, and west is 270°. These numbers allow the compass to show azimuths or bearings which are commonly stated in degrees. If local variation between magnetic north and true north is known, then direction of magnetic north also gives direction of true north.

↓ Explore More Topics
In this Dossier

True north in the context of 60th parallel north

The 60th parallel north is a circle of latitude that is 60 degrees north of Earth's equator. It crosses Europe, Asia, the Pacific Ocean, North America, and the Atlantic Ocean.

Although it lies approximately twice as far away from the Equator as from the North Pole, the 60th parallel is half as long as the Equator line, due to the cosine of 60 degrees being 0.5. This is where the Earth bulges halfway as much as on the Equator.

↑ Return to Menu

True north in the context of Compass rose

A compass rose or compass star, sometimes called a wind rose or rose of the winds, is a polar diagram displaying the orientation of the cardinal directions (north, east, south, and west) and their intermediate points. It is used on compasses (including magnetic ones), maps (such as compass rose networks), or monuments. It is particularly common in navigation systems, including nautical charts, non-directional beacons (NDB), VHF omnidirectional range (VOR) systems, satellite navigation devices ("GPS").

↑ Return to Menu

True north in the context of Celestial coordinate system

In astronomy, coordinate systems are used for specifying positions of celestial objects (satellites, planets, stars, galaxies, etc.) relative to a given reference frame, based on physical reference points available to a situated observer (e.g. the true horizon and north to an observer on Earth's surface). Coordinate systems in astronomy can specify an object's relative position in three-dimensional space or plot merely by its direction on a celestial sphere, if the object's distance is unknown or trivial.

Spherical coordinates, projected on the celestial sphere, are analogous to the geographic coordinate system used on the surface of Earth. These differ in their choice of fundamental plane, which divides the celestial sphere into two equal hemispheres along a great circle. Rectangular coordinates, in appropriate units, have the same fundamental (x, y) plane and primary (x-axis) direction, such as an axis of rotation. Each coordinate system is named after its choice of fundamental plane.

↑ Return to Menu

True north in the context of Horizontal coordinate system

The horizontal coordinate system is a celestial coordinate system that uses the observer's local horizon as the fundamental plane to define two angles of a spherical coordinate system: altitude and azimuth.Therefore, the horizontal coordinate system is sometimes called the az/el system, the alt/az system, or the alt-azimuth system, among others. In an altazimuth mount of a telescope, the instrument's two axes follow altitude and azimuth.

↑ Return to Menu

True north in the context of Magnetic declination

Magnetic declination (also called magnetic variation) is the angle between magnetic north and true north at a particular location on the Earth's surface. The angle can change over time due to polar wandering.

Magnetic north is the direction that the north end of a magnetized compass needle points, which corresponds to the direction of the Earth's magnetic field lines. True north is the direction along a meridian towards the geographic North Pole.

↑ Return to Menu

True north in the context of Rhumb line

In navigation, a rhumb line (also rhumb (/rʌm/) or loxodrome) is an arc crossing all meridians of longitude at the same angle. It is a path of constant azimuth relative to true north, which can be steered by maintaining a course of fixed bearing. When drift is not a factor, accurate tracking of a rhumb line course is independent of speed.

In practical navigation, a distinction is made between this true rhumb line and a magnetic rhumb line, with the latter being a path of constant bearing relative to magnetic north. While a navigator could easily steer a magnetic rhumb line using a magnetic compass, this course would not be true because the magnetic declination—the angle between true and magnetic north—varies across the Earth's surface.

↑ Return to Menu