Circle of latitude in the context of "60th parallel north"

⭐ In the context of the 60th parallel north, a circle of latitude, its circumference is proportionally reduced compared to the Equator because of what geometric factor?

Ad spacer

⭐ Core Definition: Circle of latitude

A circle of latitude or line of latitude on Earth is an abstract eastwest small circle connecting all locations around Earth (ignoring elevation) at a given latitude coordinate line.

Circles of latitude are often called parallels because they are parallel to each other; that is, planes that contain any of these circles never intersect each other. A location's position along a circle of latitude is given by its longitude. Circles of latitude are unlike circles of longitude, which are all great circles with the centre of Earth in the middle, as the circles of latitude get smaller as the distance from the Equator increases. Their length can be calculated by a common sine or cosine function. For example, the 60th parallel north or south is half as long as the Equator (disregarding Earth's minor flattening by 0.335%), stemming from . On the Mercator projection or on the Gall-Peters projection, a circle of latitude is perpendicular to all meridians. On the ellipsoid or on spherical projection, all circles of latitude are rhumb lines, except the Equator.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Circle of latitude in the context of 60th parallel north

The 60th parallel north is a circle of latitude that is 60 degrees north of Earth's equator. It crosses Europe, Asia, the Pacific Ocean, North America, and the Atlantic Ocean.

Although it lies approximately twice as far away from the Equator as from the North Pole, the 60th parallel is half as long as the Equator line, due to the cosine of 60 degrees being 0.5. This is where the Earth bulges halfway as much as on the Equator.

↓ Explore More Topics
In this Dossier

Circle of latitude in the context of Eratosthenes

Eratosthenes of Cyrene (/ɛrəˈtɒsθənz/; Ancient Greek: Ἐρατοσθένης [eratostʰénɛːs]; c. 276 BC – c. 195/194 BC) was an Ancient Greek philosopher, polymath and scholar. He was known as a mathematician, geographer, poet, astronomer, and music theorist. Eratosthenes became the chief librarian at the Library of Alexandria. His work was the precursor to the modern discipline of geography, and he introduced some of its terminology, coining the terms geography and geographer.

He is best remembered as the first known person to calculate the Earth's circumference. He was also the first to calculate Earth's axial tilt, which similarly proved to have remarkable accuracy. He created the first global projection of the world incorporating parallels and meridians based on the available geographic knowledge of his era. Eratosthenes was the founder of scientific chronology; he used Egyptian and Persian records to estimate the dates of the main events of the Trojan War, dating the sack of Troy to 1184 BC. In number theory, he introduced the sieve of Eratosthenes, an efficient method of identifying prime numbers and composite numbers.

↑ Return to Menu

Circle of latitude in the context of Equator

The equator is the circle of latitude that divides Earth into the Northern and Southern hemispheres. It is an imaginary line located at 0 degrees latitude, about 40,075 km (24,901 mi) in circumference, halfway between the North and South poles. The term can also be used for any other celestial body that is roughly spherical.

In spatial (3D) geometry, as applied in astronomy, the equator of a rotating spheroid (such as a planet) is the parallel (circle of latitude) at which latitude is defined to be 0°. It is an imaginary line on the spheroid, equidistant from its poles, dividing it into northern and southern hemispheres. In other words, it is the intersection of the spheroid with the plane perpendicular to its axis of rotation and midway between its geographical poles.

↑ Return to Menu

Circle of latitude in the context of Longitude

Longitude (/ˈlɒnɪtjd/, AU and UK also /ˈlɒŋɡɪ-/) is a geographic coordinate that specifies the east-west position of a point on the surface of the Earth, or another celestial body. It is an angular measurement, usually expressed in degrees and denoted by the Greek letter lambda (λ). Meridians are imaginary semicircular lines running from pole to pole that connect points with the same longitude. The prime meridian defines 0° longitude; by convention the International Reference Meridian for the Earth passes near the Royal Observatory in Greenwich, south-east London on the island of Great Britain. Positive longitudes are east of the prime meridian, and negative ones are west.

Because of the Earth's rotation, there is a close connection between longitude and time measurement. Scientifically precise local time varies with longitude: a difference of 15° longitude corresponds to a one-hour difference in local time, due to the differing position in relation to the Sun. Comparing local time to an absolute measure of time allows longitude to be determined. Depending on the era, the absolute time might be obtained from a celestial event visible from both locations, such as a lunar eclipse, or from a time signal transmitted by telegraph or radio. The principle is straightforward, but in practice finding a reliable method of determining longitude took centuries and required the effort of some of the greatest scientific minds.

↑ Return to Menu

Circle of latitude in the context of Arctic Circle

The Arctic Circle is one of the two polar circles, and the northernmost of the five major circles of latitude as shown on maps of Earth at about 66° 34' N. Its southern counterpart is the Antarctic Circle.

The Arctic Circle marks the southernmost latitude for which at the December solstice (winter) the Sun does not rise and at the June solstice (summer) the Sun does not set. These phenomena are referred to as polar night and midnight sun, respectively, and the closer to the pole one goes, the longer that situation persists. For example, in the Russian port city of Murmansk (three degrees north of the Arctic Circle) the Sun stays below the horizon for 20 days before and after the winter solstice, and above the horizon for 20 days before and after the summer solstice.

↑ Return to Menu

Circle of latitude in the context of Antarctic Circle

The Antarctic Circle is the most southerly of the five major circles of latitude that mark maps of Earth. The region south of this circle is known as the Antarctic, and the zone immediately to the north is called the Southern Temperate Zone. South of the Antarctic Circle, the Sun is above the horizon for 24 continuous hours at least once per year (and therefore visible at solar midnight) and the centre of the Sun (ignoring refraction) is below the horizon for 24 continuous hours at least once per year (and therefore not visible at solar noon); this is also true within the Arctic Circle, the Antarctic Circle’s counterpart in the Northern Hemisphere.

The position of the Antarctic Circle is not fixed and, not taking account of the nutation, currently runs 66°33′50.7″ south of the Equator. This figure may be slightly inaccurate because it does not allow for the effects of astronomical nutation, which can be up to 10″. Its latitude depends on the Earth's axial tilt, which fluctuates within a margin of more than 2° over a 41,000-year period, due to tidal forces resulting from the orbit of the Moon. Consequently, the Antarctic Circle is currently drifting southwards at a speed of about 14.5 m (48 ft) per year.

↑ Return to Menu

Circle of latitude in the context of Geographical zone

The five main latitude regions of Earth's surface comprise geographical zones, divided by the major circles of latitude. The differences between them relate to climate. They are as follows:

  1. The North Frigid Zone, between the North Pole at 90° N and the Arctic Circle at 66°33′50.7″ N, covers 4.12% of Earth's surface.
  2. The North Temperate Zone, between the Arctic Circle at 66°33′50.7″ N and the Tropic of Cancer at 23°26′09.3″ N, covers 25.99% of Earth's surface.
  3. The Torrid Zone, between the Tropic of Cancer at 23°26′09.3″ N and the Tropic of Capricorn at 23°26′09.3″ S, covers 39.78% of Earth's surface.
  4. The South Temperate Zone, between the Tropic of Capricorn at 23°26′09.3″ S and the Antarctic Circle at 66°33′50.7″ S, covers 25.99% of Earth's surface.
  5. The South Frigid Zone, from the Antarctic Circle at 66°33′50.7″ S and the South Pole at 90° S, covers 4.12% of Earth's surface.

On the basis of latitudinal extent, the globe is divided into three broad heat zones.

↑ Return to Menu

Circle of latitude in the context of Polar circle

A polar circle is a geographic term for a conditional circular line (arc) referring either to the Arctic Circle or the Antarctic Circle. These are two of the keynote circles of latitude (parallels). On Earth, the Arctic Circle is currently drifting northwards at a speed of about 14.5 m per year and is now at a mean latitude (i.e. without taking into account the astronomical nutation) of 66°33′50.7″ N; the Antarctic Circle is currently drifting southwards at a speed of about 14.5 m per year and is now at a mean latitude of 66°33′50.7″ S. Polar circles are often equated with polar regions of Earth. Due to their inherent climate environment, the bulk of the Arctic Circle, much of which is sea, is sparsely settled whereas this applies to all of Antarctica which is mainly land and sheltered ice shelves.

If Earth had no atmosphere, then both polar circles (arcs) would see at least a day a year when the center of the Sun is continuously above the horizon and at least a day a year when it is always below the horizon – a polar day and a polar night as is the case for longer, within the circles. Up to and including the associated poles (North and South), known geographically as the frigid zones, such duration extends up to half of the year, namely, close to the poles. Instead, atmospheric refraction and the Sun's light reaching the planet as an extended object rather than a point source means that just within each circle the Earth's surface does not experience any proper polar night, 24 hours where the sun does not rise. By these same two factors, just outward of each circle still experiences a polar day (a day in which the sun does not fully set).

↑ Return to Menu

Circle of latitude in the context of Tropic of Cancer

23°26′12.5″N 0°0′0″W / 23.436806°N -0.00000°E / 23.436806; -0.00000 (Prime Meridian)

The Tropic of Cancer, also known as the Northern Tropic, is the Earth's northernmost circle of latitude where the Sun can be seen directly overhead. This occurs on the June solstice, when the Northern Hemisphere is tilted toward the Sun to its maximum extent. It also reaches 90 degrees below the horizon at solar midnight on the December solstice. Using a continuously updated formula, the circle is currently 23°26′09.3″ (or 23.43592°) north of the Equator.

↑ Return to Menu