Trigonometric functions in the context of "Fourier analysis"

Play Trivia Questions online!

or

Skip to study material about Trigonometric functions in the context of "Fourier analysis"

Ad spacer

⭐ Core Definition: Trigonometric functions

In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics, geodesy, and many others. They are among the simplest periodic functions, and are widely used for studying periodic phenomena through Fourier analysis.

The trigonometric functions most widely used in modern mathematics are the sine, the cosine, and the tangent functions. Their reciprocals are respectively the cosecant, the secant, and the cotangent functions, which are less used. Each of these six trigonometric functions has a corresponding inverse function and has an analog among the hyperbolic functions.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Trigonometric functions in the context of Fourier analysis

In mathematics, the sciences, and engineering, Fourier analysis (/ˈfʊri, -iər/) is the study of the way general functions on the real line, circle, integers, finite cyclic group or general locally compact Abelian group may be represented or approximated by sums of trigonometric functions or more conveniently, complex exponentials. Fourier analysis grew from the study of Fourier series, and is named after Joseph Fourier, who showed that representing a function as a sum of trigonometric functions greatly simplifies the study of heat transfer.

Fourier analysis has applications in many areas of pure and applied mathematics, in the sciences and in engineering. The process of decomposing a function into oscillatory components is often called Fourier analysis, while the operation of rebuilding the function from these pieces is known as Fourier synthesis. For example, determining what component frequencies are present in a musical note would involve computing the Fourier transform of a sampled musical note. One can then re-synthesize the same sound by mixing purely harmonic sounds with frequency components as revealed in the Fourier analysis. In mathematics, the term Fourier analysis often refers to the study of both operations.

↓ Explore More Topics
In this Dossier

Trigonometric functions in the context of Trigonometry

Trigonometry (from Ancient Greek τρίγωνον (trígōnon) 'triangle' and μέτρον (métron) 'measure') is a branch of mathematics concerned with relationships between angles and side lengths of triangles. In particular, the trigonometric functions relate the angles of a right triangle with ratios of its side lengths. The field emerged in the Hellenistic world during the 3rd century BC from applications of geometry to astronomical studies. The Greeks focused on the calculation of chords, while mathematicians in India created the earliest-known tables of values for trigonometric ratios (also called trigonometric functions) such as sine.

Throughout history, trigonometry has been applied in areas such as geodesy, surveying, celestial mechanics, and navigation.

↑ Return to Menu

Trigonometric functions in the context of Sine

In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side opposite that angle to the length of the longest side of the triangle (the hypotenuse), and the cosine is the ratio of the length of the adjacent leg to that of the hypotenuse. For an angle , the sine and cosine functions are denoted as and .

The definitions of sine and cosine have been extended to any real value in terms of the lengths of certain line segments in a unit circle. More modern definitions express the sine and cosine as infinite series, or as the solutions of certain differential equations, allowing their extension to arbitrary positive and negative values and even to complex numbers.

↑ Return to Menu

Trigonometric functions in the context of Cathetus

In a right triangle, a cathetus (originally from Greek κάθετος, "perpendicular"; plural: catheti), commonly known as a leg, is either of the sides that are adjacent to the right angle. It is occasionally called a "side about the right angle". The side opposite the right angle is the hypotenuse. In the context of the hypotenuse, the catheti are sometimes referred to simply as "the other two sides".

If the catheti of a right triangle have equal lengths, the triangle is isosceles. If they have different lengths, a distinction can be made between the minor (shorter) and major (longer) cathetus. The ratio of the lengths of the catheti defines the trigonometric functions tangent and cotangent of the acute angles in the triangle: the ratio is the tangent of the acute angle adjacent to and is also the cotangent of the acute angle adjacent to .

↑ Return to Menu

Trigonometric functions in the context of Height (triangle)

In geometry, an altitude of a triangle is a line segment through a given vertex (called apex) and perpendicular to a line containing the side or edge opposite the apex. This (finite) edge and (infinite) line extension are called, respectively, the base and extended base of the altitude. The point at the intersection of the extended base and the altitude is called the foot of the altitude. The length of the altitude, often simply called "the altitude" or "height", symbol h, is the distance between the foot and the apex. The process of drawing the altitude from a vertex to the foot is known as dropping the altitude at that vertex. It is a special case of orthogonal projection.

Altitudes can be used in the computation of the area of a triangle: one-half of the product of an altitude's length and its base's length (symbol b) equals the triangle's area: A=hb/2. Thus, the longest altitude is perpendicular to the shortest side of the triangle. The altitudes are also related to the sides of the triangle through the trigonometric functions.

↑ Return to Menu

Trigonometric functions in the context of Closed-form expression

In mathematics, an expression or formula (including equations and inequalities) is in closed form if it is formed with constants, variables, and a set of functions considered as basic and connected by arithmetic operations (+, −, ×, /, and integer powers) and function composition. Commonly, the basic functions that are allowed in closed forms are nth root, exponential function, logarithm, and trigonometric functions. However, the set of basic functions depends on the context. For example, if one adds polynomial roots to the basic functions, the functions that have a closed form are called elementary functions.

↑ Return to Menu

Trigonometric functions in the context of Inverse trigonometric functions

In mathematics, the inverse trigonometric functions (occasionally also called antitrigonometric, cyclometric, or arcus functions) are the inverse functions of the trigonometric functions, under suitably restricted domains. Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.

↑ Return to Menu