Triangle in the context of "Sine"

Play Trivia Questions online!

or

Skip to study material about Triangle in the context of "Sine"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Triangle in the context of Sine

In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side opposite that angle to the length of the longest side of the triangle (the hypotenuse), and the cosine is the ratio of the length of the adjacent leg to that of the hypotenuse. For an angle , the sine and cosine functions are denoted as and .

The definitions of sine and cosine have been extended to any real value in terms of the lengths of certain line segments in a unit circle. More modern definitions express the sine and cosine as infinite series, or as the solutions of certain differential equations, allowing their extension to arbitrary positive and negative values and even to complex numbers.

↓ Explore More Topics
In this Dossier

Triangle in the context of Right triangle

A right triangle or right-angled triangle, sometimes called an orthogonal triangle or rectangular triangle, is a triangle in which two sides are perpendicular, forming a right angle (14 turn or 90 degrees).

The side opposite to the right angle is called the hypotenuse (side in the figure). The sides adjacent to the right angle are called legs (or catheti, singular: cathetus). Side may be identified as the side adjacent to angle and opposite (or opposed to) angle while side is the side adjacent to angle and opposite angle

↑ Return to Menu

Triangle in the context of Right angle

In geometry and trigonometry, a right angle is an angle of exactly 90 degrees or /2 radians corresponding to a quarter turn. If a ray is placed so that its endpoint is on a line and the adjacent angles are equal, then they are right angles. The term is a calque of Latin angulus rectus; here rectus means "upright", referring to the vertical perpendicular to a horizontal base line.

Closely related and important geometrical concepts are perpendicular lines, meaning lines that form right angles at their point of intersection, and orthogonality, which is the property of forming right angles, usually applied to vectors. The presence of a right angle in a triangle is the defining factor for right triangles, making the right angle basic to trigonometry.

↑ Return to Menu

Triangle in the context of Spear

A spear is a polearm consisting of a shaft, usually of wood, with a pointed head. The head may be simply the sharpened end of the shaft itself, as is the case with fire hardened spears, or it may be made of a more durable material fastened to the shaft, such as bone, flint, obsidian, copper, bronze, iron, or steel. The most common design for hunting and/or warfare, since modern times has incorporated a metal spearhead shaped like a triangle, diamond, or leaf. The heads of fishing spears usually feature multiple sharp points, with or without barbs.

Spears can be divided into two broad categories: those designed for thrusting as a melee weapon (including weapons such as lances and pikes) and those designed for throwing as a ranged weapon (usually referred to as javelins).

↑ Return to Menu

Triangle in the context of Pyramid (geometry)

A pyramid is a polyhedron (a geometric figure) formed by connecting a polygonal base and a point, called the apex. Each base edge and apex form a triangle, called a lateral face. A pyramid is a conic solid with a polygonal base. Many types of pyramids can be found by determining the shape of bases, either by based on a regular polygon (regular pyramids) or by cutting off the apex (truncated pyramid). It can be generalized into higher dimensions, known as hyperpyramid. All pyramids are self-dual.

↑ Return to Menu

Triangle in the context of Polygon

In geometry, a polygon (/ˈpɒlɪɡɒn/) is a plane figure made up of line segments connected to form a closed polygonal chain.

The segments of a closed polygonal chain are called its edges or sides. The points where two edges meet are the polygon's vertices or corners. An n-gon is a polygon with n sides; for example, a triangle is a 3-gon.

↑ Return to Menu

Triangle in the context of Fractal surface

A fractal landscape or fractal surface is generated using a stochastic algorithm designed to produce fractal behavior that mimics the appearance of natural terrain. In other words, the surface resulting from the procedure is not a deterministic, but rather a random surface that exhibits fractal behavior.

Many natural phenomena exhibit some form of statistical self-similarity that can be modeled by fractal surfaces. Moreover, variations in surface texture provide important visual cues to the orientation and slopes of surfaces, and the use of almost self-similar fractal patterns can help create natural looking visual effects.The modeling of the Earth's rough surfaces via fractional Brownian motion was first proposed by Benoit Mandelbrot.

↑ Return to Menu

Triangle in the context of Subtended angle

In geometry, an angle subtended (from Latin for "stretched under") by a line segment at an arbitrary vertex is formed by the two rays between the vertex and each endpoint of the segment. For example, a side of a triangle subtends the opposite angle.

More generally, an angle subtended by an arc of a curve is the angle subtended by the corresponding chord of the arc.For example, a circular arc subtends the central angle formed by the two radii through the arc endpoints.

↑ Return to Menu

Triangle in the context of Inscribed figure

In geometry, an inscribed planar shape or solid is one that is enclosed by and "fits snugly" inside another geometric shape or solid. To say that "figure F is inscribed in figure G" means precisely the same thing as "figure G is circumscribed about figure F". A circle or ellipse inscribed in a convex polygon (or a sphere or ellipsoid inscribed in a convex polyhedron) is tangent to every side or face of the outer figure (but see Inscribed sphere for semantic variants). A polygon inscribed in a circle, ellipse, or polygon (or a polyhedron inscribed in a sphere, ellipsoid, or polyhedron) has each vertex on the outer figure; if the outer figure is a polygon or polyhedron, there must be a vertex of the inscribed polygon or polyhedron on each side of the outer figure. An inscribed figure is not necessarily unique in orientation; this can easily be seen, for example, when the given outer figure is a circle, in which case a rotation of an inscribed figure gives another inscribed figure that is congruent to the original one.

Familiar examples of inscribed figures include circles inscribed in triangles or regular polygons, and triangles or regular polygons inscribed in circles. A circle inscribed in any polygon is called its incircle, in which case the polygon is said to be a tangential polygon. A polygon inscribed in a circle is said to be a cyclic polygon, and the circle is said to be its circumscribed circle or circumcircle.

↑ Return to Menu