Tooth enamel in the context of "P. boisei"

Play Trivia Questions online!

or

Skip to study material about Tooth enamel in the context of "P. boisei"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Tooth enamel in the context of P. boisei

Paranthropus boisei is a species of australopithecine from the Early Pleistocene of East Africa about 2.5 to 1.15 million years ago. The holotype specimen, OH 5, was discovered by palaeoanthropologist Mary Leakey in 1959 at Olduvai Gorge, Tanzania and described by her husband Louis a month later. It was originally placed into its own genus as "Zinjanthropus boisei", but is now relegated to Paranthropus along with other robust australopithecines. However, it is also argued that Paranthropus is an invalid grouping and synonymous with Australopithecus, so the species is also often classified as Australopithecus boisei.

Robust australopithecines are characterised by heavily built skulls capable of producing high stresses and bite forces, and some of the largest molars with the thickest enamel of any known ape. P. boisei is the most robust of this group. Brain size was about 450–550 cc (27–34 cu in), similar to other australopithecines. Some skulls are markedly smaller than others, which is taken as evidence of sexual dimorphism where females are much smaller than males, though body size is difficult to estimate given only one specimen, OH 80, definitely provides any bodily elements. The presumed male OH 80 may have been 156 cm (5 ft 1 in) tall and 61.7 kg (136 lb) in weight, and the presumed female KNM-ER 1500 124 cm (4 ft 1 in) tall (though its species designation is unclear). The arm and hand bones of OH 80 and KNM-ER 47000 suggest P. boisei was arboreal to a degree.

↓ Explore More Topics
In this Dossier

Tooth enamel in the context of Australopithecus africanus

Australopithecus africanus is an extinct species of australopithecine which lived between about 3.3 and 2.1 million years ago in the Late Pliocene to Early Pleistocene of South Africa. The species has been recovered from Taung, Sterkfontein, Makapansgat, and Gladysvale. The first specimen, the Taung child, was described by anatomist Raymond Dart in 1924, and was the first early hominin found. However, its closer relations to humans than to other apes would not become widely accepted until the middle of the century because most had believed humans evolved outside of Africa. It is unclear how A. africanus relates to other hominins, being variously placed as ancestral to Homo and Paranthropus, to just Paranthropus, or to just P. robustus. The specimen "Little Foot" is the most completely preserved early hominin, with 90% of the skeleton intact, and the oldest South African australopith. However, it is controversially suggested that it and similar specimens be split off into "A. prometheus".

A. africanus brain volume was about 420–510 cc (26–31 cu in). Like other early hominins, the cheek teeth were enlarged and had thick enamel. Male skulls may have been more robust than female skulls. Males may have been on average 140 cm (4 ft 7 in) in height and 40 kg (88 lb) in weight, and females 125 cm (4 ft 1 in) and 30 kg (66 lb). A. africanus was a competent biped, albeit less efficient at walking than humans. A. africanus also had several upper body traits in common with arboreal non-human apes. This is variously interpreted as either evidence of a partially or fully arboreal lifestyle, or as a non-functional vestige from a more apelike ancestor. The upper body of A. africanus is more apelike than that of the East African A. afarensis.

↑ Return to Menu

Tooth enamel in the context of Dentine

Dentin (/ˈdɛntɪn/ DEN-tin) (American English) or dentine (/ˈdɛnˌtn/ DEN-teen or /ˌdɛnˈtn/ DEN-TEEN) (British English) (Latin: substantia eburnea) is a calcified tissue of the body and, along with enamel, cementum, and pulp, is one of the four major components of teeth. It is usually covered by enamel on the crown and cementum on the root and surrounds the entire pulp. By volume, 45% of dentin consists of the mineral hydroxyapatite, 33% is organic material, and 22% is water. Yellow in appearance, it greatly affects the color of a tooth due to the translucency of enamel. Dentin, which is less mineralized and less brittle than enamel, is necessary for the support of enamel. Dentin rates approximately 3 on the Mohs scale of mineral hardness. There are two main characteristics which distinguish dentin from enamel: firstly, dentin forms throughout life; secondly, dentin is sensitive and can become hypersensitive to changes in temperature due to the sensory function of odontoblasts, especially when enamel recedes and dentin channels become exposed.

↑ Return to Menu

Tooth enamel in the context of Hard tissue

Hard tissue, refers to "normal" calcified tissue, is the tissue which is mineralized and has a firm intercellular matrix. The hard tissues of humans are bone, tooth enamel, dentin, and cementum. The term is in contrast to soft tissue.

↑ Return to Menu

Tooth enamel in the context of Mineralized tissues

Mineralized tissues are biological tissues that incorporate minerals into soft matrices. Typically these tissues form a protective shield or structural support. Bone, mollusc shells, deep sea sponge Euplectella species, radiolarians, diatoms, antler bone, tendon, cartilage, tooth enamel and dentin are some examples of mineralized tissues.

These tissues have been finely tuned to enhance their mechanical capabilities over millions of years of evolution. Thus, mineralized tissues have been the subject of many studies since there is a lot to learn from nature as seen from the growing field of biomimetics. The remarkable structural organization and engineering properties makes these tissues desirable candidates for duplication by artificial means. Mineralized tissues inspire miniaturization, adaptability and multifunctionality. While natural materials are made up of a limited number of components, a larger variety of material chemistries can be used to simulate the same properties in engineering applications. However, the success of biomimetics lies in fully grasping the performance and mechanics of these biological hard tissues before swapping the natural components with artificial materials for engineering design.

↑ Return to Menu

Tooth enamel in the context of Phosphorus cycle

The phosphorus cycle is the biogeochemical cycle that involves the movement of phosphorus through the lithosphere, hydrosphere, and biosphere. Unlike many other biogeochemical cycles, the atmosphere does not play a significant role in the movement of phosphorus, because phosphorus and phosphorus-based materials do not enter the gaseous phase readily, as the main source of gaseous phosphorus, phosphine, is only produced in isolated and specific conditions. Therefore, the phosphorus cycle is primarily examined studying the movement of orthophosphate (PO3−4), the form of phosphorus that is most commonly seen in the environment, through terrestrial and aquatic ecosystems.

Living organisms require phosphorus, a vital component of DNA, RNA, ATP, etc., for their proper functioning. Phosphorus also enters in the composition of phospholipids present in cell membranes. Plants assimilate phosphorus as phosphate and incorporate it into organic compounds. In animals, inorganic phosphorus in the form of apatite (Ca5(PO4)3(OH,F)) is also a key component of bones, teeth (tooth enamel), etc. On the land, phosphorus gradually becomes less available to plants over thousands of years, since it is slowly lost in runoff. Low concentration of phosphorus in soils reduces plant growth and slows soil microbial growth, as shown in studies of soil microbial biomass. Soil microorganisms act as both sinks and sources of available phosphorus in the biogeochemical cycle. Short-term transformation of phosphorus is chemical, biological, or microbiological. In the long-term global cycle, however, the major transfer is driven by tectonic movement over geologic time and weathering of phosphate containing rock such as apatite. Furthermore, phosphorus tends to be a limiting nutrient in aquatic ecosystems. However, as phosphorus enters aquatic ecosystems, it has the possibility to lead to over-production in the form of eutrophication, which can happen in both freshwater and saltwater environments.

↑ Return to Menu

Tooth enamel in the context of Ectoderm

The ectoderm is one of the three primary germ layers formed in early embryonic development. It is the outermost layer, and is superficial to the mesoderm (the middle layer) and endoderm (the innermost layer). It emerges and originates from the outer layer of germ cells. The word ectoderm comes from the Greek ektos meaning "outside", and derma meaning "skin".

Generally speaking, the ectoderm differentiates to form epithelial and neural tissues (spinal cord, nerves and brain). This includes the skin, linings of the mouth, anus, nostrils, sweat glands, hair and nails, and tooth enamel. Other types of epithelium are derived from the endoderm.

↑ Return to Menu

Tooth enamel in the context of Crown (tooth)

In dentistry, the crown is the visible part of the tooth above the gingival margin and is an essential component of dental anatomy. Covered by enamel, the crown plays a crucial role in cutting, tearing, and grinding food. Its shape and structure vary depending on the type and function of the tooth (incisors, canines, premolars, or molars), and differ between primary dentition and permanent dentition. The crown also contributes to facial aesthetics, speech, and oral health.

↑ Return to Menu

Tooth enamel in the context of Tooth decay

Tooth decay, also known as caries, is the breakdown of teeth due to acids produced by bacteria. The resulting cavities may be many different colors, from yellow to black. Symptoms may include pain and difficulty eating. Complications may include inflammation of the tissue around the tooth, tooth loss and infection or abscess formation. Tooth regeneration is an ongoing stem cell–based field of study that aims to find methods to reverse the effects of decay; current methods are based on easing symptoms.

The cause of cavities is acid from bacteria dissolving the hard tissues of the teeth (enamel, dentin, and cementum). The acid is produced by the bacteria when they break down food debris or sugar on the tooth surface. Simple sugars in food are these bacteria's primary energy source, and thus a diet high in simple sugar is a risk factor. If mineral breakdown is greater than buildup from sources such as saliva, caries results. Risk factors include conditions that result in less saliva, such as diabetes mellitus, Sjögren syndrome, and some medications. Medications that decrease saliva production include psychostimulants, antihistamines, and antidepressants. Dental caries are also associated with poverty, poor cleaning of the mouth, and receding gums resulting in exposure of the roots of the teeth.

↑ Return to Menu