Timeline of discovery of Solar System planets and their moons in the context of "Jovian system"

Play Trivia Questions online!

or

Skip to study material about Timeline of discovery of Solar System planets and their moons in the context of "Jovian system"

Ad spacer

⭐ Core Definition: Timeline of discovery of Solar System planets and their moons

The timeline of discovery of Solar System planets and their natural satellites charts the progress of the discovery of new bodies over history. Each object is listed in chronological order of its discovery (multiple dates occur when the moments of imaging, observation, and publication differ), identified through its various designations (including temporary and permanent schemes), and the discoverer(s) listed.

Historically the naming of moons did not always match the times of their discovery. Traditionally, the discoverer enjoys the privilege of naming the new object; however, some neglected to do so (E. E. Barnard stated he would "defer any suggestions as to a name" [for Amalthea] "until a later paper" but never got around to picking one from the numerous suggestions he received) or actively declined (S. B. Nicholson stated "Many have asked what the new satellites [Lysithea and Carme] are to be named. They will be known only by the numbers X and XI, written in Roman numerals, and usually prefixed by the letter J to identify them with Jupiter."). The issue arose nearly as soon as planetary satellites were discovered: Galileo referred to the four main satellites of Jupiter using numbers while the names suggested by his rival Simon Marius gradually gained universal acceptance. The International Astronomical Union (IAU) eventually started officially approving names in the late 1970s. With the explosion of discoveries in the 21st century, new moons have once again started to be left unnamed even after their numbering, beginning with Jupiter LI and Jupiter LII in 2010.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Timeline of discovery of Solar System planets and their moons in the context of Jovian system

There are 97 known moons of the planet Jupiter. This number does not include a number of meter-sized moonlets thought to be shed from the inner moons, nor hundreds of possible kilometer-sized outer irregular moons that were only briefly captured by telescopes. All together, Jupiter's moons form a satellite system, colloquially referred to as the Jovian system. The most massive of the moons are the four Galilean moons: Io, Europa, Ganymede, and Callisto, all of which were independently discovered in 1610 by Galileo Galilei and Simon Marius and were the first objects found to orbit a body that was neither Earth nor the Sun. Much more recently, beginning in 1892, dozens of far smaller Jovian moons have been detected and have received the names of lovers (or other sexual partners) or daughters of the Roman god Jupiter or his Greek equivalent Zeus. The Galilean moons are by far the largest and most massive objects to orbit Jupiter, with the remaining 93 known moons and the rings together comprising just 0.003% of the total orbiting mass.

Of Jupiter's moons, eight are regular satellites with prograde and nearly circular orbits that are not greatly inclined with respect to Jupiter's equatorial plane. The Galilean satellites are nearly spherical in shape due to their planetary mass, and are just massive enough that they would be considered planets if they were in direct orbit around the Sun. The other four regular satellites, known as the inner moons, are much smaller and closer to Jupiter; these serve as sources of the dust that makes up Jupiter's rings. The remainder of Jupiter's moons are outer irregular satellites whose prograde and retrograde orbits are much farther from Jupiter and have high inclinations and eccentricities. The largest of these moons were likely asteroids that were captured from solar orbits by Jupiter before impacts with other small bodies shattered them into many kilometer-sized fragments, forming collisional families of moons sharing similar orbits. Jupiter is expected to have about 100 irregular moons larger than 1 km (0.6 mi) in diameter, plus around 500 more smaller retrograde moons down to diameters of 0.8 km (0.5 mi). Of the 89 known irregular moons of Jupiter, 40 of them have not yet been officially given names.

↓ Explore More Topics
In this Dossier

Timeline of discovery of Solar System planets and their moons in the context of Galilean moons

The Galilean moons (/ˌɡælɪˈl.ən/), or Galilean satellites, are the four largest moons of Jupiter. They are, in descending-size order, Ganymede, Callisto, Io, and Europa. They are the most readily visible Solar System objects after Saturn, the dimmest of the classical planets; though their closeness to bright Jupiter makes naked-eye observation very difficult, they are readily seen with common binoculars, even under night sky conditions of high light pollution. The invention of the telescope allowed astronomers to discover the moons in 1610. Through this, they became the first Solar System objects discovered since humans have started tracking the classical planets, and the first objects to be found to orbit any planet beyond Earth.

They are planetary-mass moons and among the largest objects in the Solar System. All four, along with Titan, Triton, and Earth's Moon, are larger than any of the Solar System's dwarf planets. The largest, Ganymede, is the largest moon in the Solar System and surpasses the planet Mercury in size (though not mass). Callisto is only slightly smaller than Mercury in size; the smaller ones, Io and Europa, are about the size of the Moon. The three inner moons — Io, Europa, and Ganymede — are in a 4:2:1 orbital resonance with each other. While the Galilean moons are spherical, all of Jupiter's remaining moons have irregular forms because they are too small for their self-gravitation to pull them into spheres.

↑ Return to Menu