Throughput in the context of Congestion control


Throughput in the context of Congestion control

Throughput Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Throughput in the context of "Congestion control"


⭐ Core Definition: Throughput

Network throughput (or just throughput, when in context) refers to the rate of message delivery over a communication channel in a communication network, such as Ethernet or packet radio. The data that these messages contain may be delivered over physical or logical links, or through network nodes. Throughput is usually measured in bits per second (bit/s, sometimes abbreviated bps), and sometimes in packets per second (p/s or pps) or data packets per time slot.

The aggregate throughput is the sum of the data rates that are delivered over all channels in a network. Throughput represents digital bandwidth consumption.

↓ Menu
HINT:

👉 Throughput in the context of Congestion control

Network congestion in computer networking and queueing theory is the reduced quality of service that occurs when a network node or link is carrying or processing more load than its capacity. Typical effects include queueing delay, packet loss or the blocking of new connections. A consequence of congestion is that an incremental increase in offered load leads either only to a small increase or even a decrease in network throughput.

Network protocols that use aggressive retransmissions to compensate for packet loss due to congestion can increase congestion, even after the initial load has been reduced to a level that would not normally have induced network congestion. Such networks exhibit two stable states under the same level of load. The stable state with low throughput is known as congestive collapse.

↓ Explore More Topics
In this Dossier

Throughput in the context of Single-machine scheduling

Single-machine scheduling or single-resource scheduling is an optimization problem in computer science and operations research. We are given n jobs J1, J2, ..., Jn of varying processing times, which need to be scheduled on a single machine, in a way that optimizes a certain objective, such as the throughput.

Single-machine scheduling is a special case of identical-machines scheduling, which is itself a special case of optimal job scheduling. Many problems, which are NP-hard in general, can be solved in polynomial time in the single-machine case.

View the full Wikipedia page for Single-machine scheduling
↑ Return to Menu

Throughput in the context of Quality of service

Quality of service (QoS) is the description or measurement of the overall performance of a service, such as a telephony or computer network, or a cloud computing service, particularly the performance seen by the users of the network. To quantitatively measure quality of service, several related aspects of the network service are often considered, such as packet loss, bit rate, throughput, transmission delay, availability, jitter, etc.

In the field of computer networking and other packet-switched telecommunication networks, quality of service refers to traffic prioritization and resource reservation control mechanisms rather than the achieved service quality. Quality of service is the ability to provide different priorities to different applications, users, or data flows, or to guarantee a certain level of performance to a data flow.

View the full Wikipedia page for Quality of service
↑ Return to Menu

Throughput in the context of Networking cable

Networking cable is a piece of networking hardware used to connect one network device to other network devices or to connect two or more computers to share devices such as printers or scanners. Different types of network cables, such as coaxial cable, optical fiber cable, and twisted pair cables, are used depending on the network's topology, protocol, and size. The devices can be separated by a few meters (e.g. via Ethernet) or nearly unlimited distances (e.g. via the interconnections of the Internet).

While wireless networks are more easily deployed when total throughput is not an issue, most permanent larger computer networks utilize cables to transfer signals from one point to another.

View the full Wikipedia page for Networking cable
↑ Return to Menu

Throughput in the context of Computer performance

In computing, computer performance is the amount of useful work accomplished by a computer system. Outside of specific contexts, computer performance is estimated in terms of accuracy, efficiency and speed of executing computer program instructions. When it comes to high computer performance, one or more of the following factors might be involved:

View the full Wikipedia page for Computer performance
↑ Return to Menu

Throughput in the context of Hardware acceleration

Hardware acceleration is the use of computer hardware, known as a hardware accelerator, to perform specific functions faster than can be done by software running on a general-purpose central processing unit (CPU). Any transformation of data that can be calculated by software running on a CPU can also be calculated by an appropriate hardware accelerator, or by a combination of both.

To perform computing tasks more efficiently, generally one can invest time and money in improving the software, improving the hardware, or both. There are various approaches with advantages and disadvantages in terms of decreased latency, increased throughput, and reduced energy consumption.

View the full Wikipedia page for Hardware acceleration
↑ Return to Menu

Throughput in the context of Packet loss

Packet loss occurs when one or more packets of data travelling across a computer network fail to reach their destination. Packet loss is either caused by errors in data transmission, typically across wireless networks, or network congestion. Packet loss is measured as a percentage of packets lost with respect to packets sent.

The Transmission Control Protocol (TCP) detects packet loss and performs retransmissions to ensure reliable messaging. Packet loss in a TCP connection is also used to avoid congestion and thus produces an intentionally reduced throughput for the connection.

View the full Wikipedia page for Packet loss
↑ Return to Menu