Tetraquark in the context of "Exotic hadron"

Play Trivia Questions online!

or

Skip to study material about Tetraquark in the context of "Exotic hadron"

Ad spacer

⭐ Core Definition: Tetraquark

In particle physics, a tetraquark is an exotic meson composed of four valence quarks. A tetraquark state has long been suspected to be allowed by quantum chromodynamics, the modern theory of strong interactions. A tetraquark state is an example of an exotic hadron that lies outside the conventional quark model classification. A number of different types of tetraquark have been observed.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Tetraquark in the context of Exotic hadron

Exotic hadrons are subatomic particles composed of quarks and gluons, but which – unlike "well-known" hadrons such as protons, neutrons and mesons – consist of more than three valence quarks. By contrast, "ordinary" hadrons contain just two or three quarks. Hadrons with explicit valence gluon content would also be considered exotic. In theory, there is no limit on the number of quarks in a hadron, as long as the hadron's color charge is white, or color-neutral.

Consistent with ordinary hadrons, exotic hadrons are classified as being either fermions, like ordinary baryons, or bosons, like ordinary mesons. According to this classification scheme, pentaquarks, containing five valence quarks, are exotic baryons, while tetraquarks (four valence quarks) and hexaquarks (six quarks, consisting of either a dibaryon or three quark-antiquark pairs) would be considered exotic mesons. Tetraquark and pentaquark particles are believed to have been observed and are being investigated; hexaquarks have not yet been confirmed as observed.

↓ Explore More Topics
In this Dossier

Tetraquark in the context of Hadron

In particle physics, a hadron is a composite subatomic particle made of two or more quarks held together by the strong nuclear force. Pronounced /ˈhædrɒn/ , the name is derived from Ancient Greek ἁδρός (hadrós) 'stout, thick'. They are analogous to molecules, which are held together by the electric force. Most of the mass of ordinary matter comes from two hadrons: the proton and the neutron, while most of the mass of the protons and neutrons is in turn due to the binding energy of their constituent quarks, due to the strong force.

Hadrons are categorized into two broad families: baryons, made of an odd number of quarks (usually three), and mesons, made of an even number of quarks (usually two: one quark and one antiquark). Protons and neutrons (which make the majority of the mass of an atom) are examples of baryons; pions are an example of a meson. A tetraquark state (an exotic meson), named the Z(4430), was discovered in 2007 by the Belle Collaboration and confirmed as a resonance in 2014 by the LHCb collaboration. Two pentaquark states (exotic baryons), named P
c
(4380)
and P
c
(4450)
, were discovered in 2015 by the LHCb collaboration. There are several other "Exotic" hadron candidates and other colour-singlet quark combinations that may also exist.

↑ Return to Menu

Tetraquark in the context of Baryon number

In particle physics, the baryon number (B) is an additive quantum number of a system. It is defined aswhere is the number of quarks, and is the number of antiquarks. Baryons (three quarks) have B = +1, mesons (one quark, one antiquark) have B = 0, and antibaryons (three antiquarks) have B = −1. Exotic hadrons like pentaquarks (four quarks, one antiquark) and tetraquarks (two quarks, two antiquarks) are also classified as baryons and mesons depending on their baryon number. In the Standard Model B conservation is an accidental symmetry which means that it appears in the Standard Model but is often violated when going beyond it. Physics beyond the Standard Model theories that contain baryon number violation are, for example, Standard Model with extra dimensions, Supersymmetry, Grand Unified Theory and String theory.

↑ Return to Menu

Tetraquark in the context of Exotic meson

In particle physics, exotic mesons are mesons that have quantum numbers not possible in the quark model; some proposals for non-standard quark model mesons could be:

All exotic mesons are classed as mesons because they are hadrons and carry zero baryon number. Of these, glueballs must be flavor singlets – that is, must have zero isospin, strangeness, charm, bottomness, and topness. Like all particle states, exotic mesons are specified by the quantum numbers which label representations of the Poincaré symmetry, q.e., by the mass (enclosed in parentheses), and by J, where J is the angular momentum, P is the intrinsic parity, and C is the charge conjugation parity; One also often specifies the isospin I of the meson. Typically, every quark model meson comes in SU(3) flavor nonet: an octet and an associated flavor singlet. A glueball shows up as an extra (supernumerary) particle outside the nonet.

↑ Return to Menu

Tetraquark in the context of Z(4430)

Z(4430) is a mesonic resonance discovered by the Belle experiment. It has a mass of 4430 MeV/c. The resonant nature of the peak has been confirmed by the LHCb experiment with a significance of at least 13.9 σ. The particle is charged and is thought to have a quark content of ccdu, making it a tetraquark candidate. It has the spin-parity quantum numbers J = 1.

The particle joins the X(3872), Zc(3900) and Y(4140) as exotic hadron candidates observed by multiple experiments, although it is the first to be confirmed as a resonance.

↑ Return to Menu