Sulfate in the context of "Salt glacier"

Play Trivia Questions online!

or

Skip to study material about Sulfate in the context of "Salt glacier"

Ad spacer

⭐ Core Definition: Sulfate

The sulfate or sulphate ion is a polyatomic anion with the empirical formula SO4. Salts, acid derivatives, and peroxides of sulfate are widely used in industry. Sulfates occur widely in everyday life. Sulfates are salts of sulfuric acid and many are prepared from that acid.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Sulfate in the context of Anaerobe

An anaerobic organism or anaerobe is any organism that does not require molecular oxygen for its growth. It may react negatively or even die in the presence of free oxygen. Anaerobic organisms do not use oxygen as a terminal electron acceptor in their respiration process to produce energy, but a less powerful oxidizing agent, such as nitrate, ferric ion, Mn(IV), sulfate or bicarbonate anions. In contrast, an aerobic organism (aerobe) is an organism that requires a sufficiently oxygenated environment to respire, produce its energy, and thrive. Because the anaerobic energy production was the first mechanism to be used by living microorganisms in their evolution and is much less efficient than the aerobic pathway, anaerobes are practically, de facto, always unicellular organisms (e.g. bacteria and archaea (prokaryotes), or protozoans (eukaryotes). However, a minuscule multicellular organism, with an exceptionally rare metabolism and surviving in a hypersaline brine pool in the darkness of the bottom of the Mediterranean Sea, has been recently discovered. Meanwhile, it remains a scientific curiosity, as the much higher energy requirements of most multicellular organisms cannot be met by anaerobic respiration. Most fungi (eukaryotes) are obligate aerobes, requiring oxygen to survive and grow; however, some species, such as the Chytridiomycota that reside in the rumen of cattle, are obligate anaerobes; for these species, anaerobic respiration is used because oxygen would disrupt their metabolism or kill them. The deep seafloor and its underlying unconsolidated sediments ranks among the largest potential habitats for anaerobic microorganisms on Earth. Moreover, chemoautotroph microbes also thrive around hydrothermal vents, discharging hot water on the ocean seabed near mid-ocean ridges, where anaerobic conditions prevail. These microbes produce energy in the absence of sunlight or oxygen through a process called anaerobic respiration, whereby inorganic compounds and ions such as protons (H), elemental sulfur and its derivatives (SO2−4, S2O2−3), or ferric ions, are reduced to drive oxidative phosphorylation.

↑ Return to Menu

Sulfate in the context of Alabaster

Alabaster is a soft rock used for carvings and as a source of plaster powder. Archaeologists, geologists, and the stone industry have different definitions for the word alabaster. In archaeology, the term alabaster includes objects and artefacts made from two different minerals: (i) the fine-grained, massive type of gypsum, and (ii) the fine-grained, banded type of calcite.

Chemically, gypsum is a hydrous sulfate of calcium, whereas calcite is a carbonate of calcium. As types of alabaster, gypsum and calcite have similar properties, such as light color, translucence, and soft stones that can be carved and sculpted; thus the historical use and application of alabaster for the production of carved, decorative artefacts and objets d’art. Calcite alabaster also is known as onyx-marble, Egyptian alabaster, and Oriental alabaster, which terms usually describe either a compact, banded travertine stone or a stalagmitic limestone colored with swirling bands of cream and brown.

↑ Return to Menu

Sulfate in the context of Anaerobic respiration

Anaerobic respiration is respiration using electron acceptors other than molecular oxygen (O2) in its electron transport chain.

In aerobic organisms, electrons are shuttled to an electron transport chain, and the final electron acceptor is oxygen. Molecular oxygen is an excellent electron acceptor. Anaerobes instead use less-oxidizing substances such as nitrate (NO
3
), fumarate (C
4
H
2
O
4
), sulfate (SO
4
), or elemental sulfur (S). These terminal electron acceptors have smaller reduction potentials than O2. Less energy per oxidized molecule is released. Therefore, anaerobic respiration is less efficient than aerobic.

↑ Return to Menu

Sulfate in the context of Organic waste

Biodegradable waste includes any organic matter in waste which can be broken down into carbon dioxide, water, methane, compost, humus, and simple organic molecules by micro-organisms and other living things by composting, aerobic digestion, anaerobic digestion or similar processes. It mainly includes kitchen waste (spoiled food, trimmings, inedible parts), ash, soil, dung and other plant matter. In waste management, it also includes some inorganic materials which can be decomposed by bacteria. Such materials include gypsum and its products such as plasterboard and other simple sulfates which can be decomposed by sulfate reducing bacteria to yield hydrogen sulfide in anaerobic land-fill conditions.

In domestic waste collection, the scope of biodegradable waste may be narrowed to include only those degradable wastes capable of being handled in the local waste handling facilities. To address this, many local waste management districts are integrating programs related to sort the biodegradable waste for composting or other waste valorization strategies, where biodegradable waste gets reused for other products, such as using agricultural waste for fiber production or biochar.

↑ Return to Menu

Sulfate in the context of Copper(II) sulfate

Copper(II) sulfate is an inorganic compound with the chemical formula CuSO4. It forms hydrates CuSO4·nH2O, where n can range from 1 to 7. The pentahydrate (n = 5), a bright blue crystal, is the most commonly encountered hydrate of copper(II) sulfate, while its anhydrous form is white. Older names for the pentahydrate include blue vitriol, bluestone, vitriol of copper, and Roman vitriol. It exothermically dissolves in water to give the aquo complex [Cu(H2O)6], which has octahedral molecular geometry. The structure of the solid pentahydrate reveals a polymeric structure wherein copper is again octahedral but bound to four water ligands. The Cu(II)(H2O)4 centers are interconnected by sulfate anions to form chains.

↑ Return to Menu

Sulfate in the context of Hard water

Hard water is water that has a high mineral content (in contrast with "soft water"). Hard water is formed when water percolates through deposits of limestone, chalk or gypsum, which are largely made up of calcium and magnesium carbonates, bicarbonates and sulfates.

Drinking hard water may have moderate health benefits. It can pose critical problems in industrial settings, where water hardness is monitored to avoid costly breakdowns in boilers, cooling towers, and other equipment that handles water.

↑ Return to Menu

Sulfate in the context of Lazurite

Lazurite, old name Azure spar is a tectosilicate mineral with sulfate, sulfur and chloride with formula (Na,Ca)8[(S,Cl,SO4,OH)2|(Al6Si6O24)]. It is a feldspathoid and a member of the sodalite group. Lazurite crystallizes in the isometric system although well‐formed crystals are rare. It is usually massive and forms the bulk of the gemstone lapis lazuli.

↑ Return to Menu