Cooling tower in the context of "Hard water"

Play Trivia Questions online!

or

Skip to study material about Cooling tower in the context of "Hard water"

Ad spacer

⭐ Core Definition: Cooling tower

A cooling tower is a device that rejects waste heat to the atmosphere through the cooling of a coolant stream, usually a water stream, to a lower temperature. Cooling towers may either use the evaporation of water to remove heat and cool the working fluid to near the wet-bulb air temperature or, in the case of dry cooling towers, rely solely on air to cool the working fluid to near the dry-bulb air temperature using radiators.

Common applications include cooling the circulating water used in oil refineries, petrochemical and other chemical plants, thermal power stations, nuclear power stations and HVAC systems for cooling buildings. The classification is based on the type of air induction into the tower: the main types of cooling towers are natural draft and induced draft cooling towers.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Cooling tower in the context of Hard water

Hard water is water that has a high mineral content (in contrast with "soft water"). Hard water is formed when water percolates through deposits of limestone, chalk or gypsum, which are largely made up of calcium and magnesium carbonates, bicarbonates and sulfates.

Drinking hard water may have moderate health benefits. It can pose critical problems in industrial settings, where water hardness is monitored to avoid costly breakdowns in boilers, cooling towers, and other equipment that handles water.

↓ Explore More Topics
In this Dossier

Cooling tower in the context of Demolition

Demolition (also known as razing and wrecking) is the science and engineering in safely and efficiently tearing down buildings and other artificial structures. Demolition contrasts with deconstruction, which involves taking a building apart while carefully preserving valuable elements for reuse purposes.

For small buildings, such as houses, that are only two or three stories high, demolition is a rather simple process. The building is pulled down either manually or mechanically using large hydraulic equipment: elevated work platforms, cranes, excavators or bulldozers. Larger buildings may require the use of a wrecking ball, a heavy weight on a cable that is swung by a crane into the side of the buildings. Wrecking balls are especially effective against masonry, but are less easily controlled and often less efficient than other methods. Newer methods may use rotational hydraulic shears and silenced rockbreakers attached to excavators to cut or break through wood, steel, and concrete. The use of shears is especially common when flame cutting would be dangerous.

↑ Return to Menu

Cooling tower in the context of Mass transfer

Mass transfer is the net movement of mass from one location (usually meaning stream, phase, fraction, or component) to another. Mass transfer occurs in many processes, such as absorption, evaporation, drying, precipitation, membrane filtration, and distillation. Mass transfer is used by different scientific disciplines for different processes and mechanisms. The phrase is commonly used in engineering for physical processes that involve diffusive and convective transport of chemical species within physical systems.

Some common examples of mass transfer processes are the evaporation of water from a pond to the atmosphere, the purification of blood in the kidneys and liver, and the distillation of alcohol. In industrial processes, mass transfer operations include separation of chemical components in distillation columns, absorbers such as scrubbers or stripping, adsorbers such as activated carbon beds, and liquid-liquid extraction. Mass transfer is often coupled to additional transport processes, for instance in industrial cooling towers. These towers couple heat transfer to mass transfer by allowing hot water to flow in contact with air. The water is cooled by expelling some of its content in the form of water vapour.

↑ Return to Menu

Cooling tower in the context of Nuclear meltdown

A nuclear meltdown (core meltdown, core melt accident, meltdown or partial core melt) is a severe nuclear reactor accident that results in core damage from overheating. The term nuclear meltdown is not officially defined by the International Atomic Energy Agency, however it has been defined to mean the accidental melting of the core or fuel of a nuclear reactor, and is in common usage a reference to the core's either complete or partial collapse.

A core meltdown accident occurs when the heat generated by a nuclear reactor exceeds the heat removed by the cooling systems to the point where at least one nuclear fuel element exceeds its melting point. This differs from a fuel element failure, which is not caused by high temperatures. A meltdown may be caused by a loss of coolant, loss of coolant pressure, or low coolant flow rate, or be the result of a criticality excursion in which the reactor's power level exceeds its design limits.

↑ Return to Menu

Cooling tower in the context of Athlone Power Station

Athlone Power Station was a coal-fired power station in Athlone, Cape Town, South Africa. The site stopped generating power in 2003 and was decommissioned. However, in 2021 plans were announced to re-use the site.

Athlone Power Station was situated on the N2 freeway into the city, consisted of a large brick generation building, two 99m brick chimneys, and two cooling towers, fed by reclaimed water from a nearby sewage plant. It was commissioned in 1962 with 6 turbines with a nominal capacity of 180 megawatts, and operated by the City of Cape Town. Between 1985 and 1994 the station was held on standby, but it resumed generating in 1995 with a reduced capacity of 120 MW. Between 1995 and 2003 it was used to generate power during peak demand periods or power failures of the national grid. By 2003, significant investment was required due to the age of the power station, so generation ended.

↑ Return to Menu

Cooling tower in the context of Pump

A pump is a device that moves fluids (liquids or gases), or sometimes slurries, by mechanical action, typically converted from electrical energy into hydraulic or pneumatic energy.

Mechanical pumps serve in a wide range of applications such as pumping water from wells, aquarium filtering, pond filtering and aeration, in the car industry for water-cooling and fuel injection, in the energy industry for pumping oil and natural gas or for operating cooling towers and other components of heating, ventilation and air conditioning systems. In the medical industry, pumps are used for biochemical processes in developing and manufacturing medicine, and as artificial replacements for body parts, in particular the artificial heart and penile prosthesis.

↑ Return to Menu

Cooling tower in the context of Legionella

Legionella is a genus of gram-negative bacteria that can be seen using a silver stain or grown in a special media that contains cysteine, an amino acid. It is known to cause legionellosis (all illnesses caused by Legionella) including a pneumonia-type illness called Legionnaires' disease and a mild flu-like illness called Pontiac fever. These bacteria are common in many places, like soil and water. There are over 50 species and 70 types (serogroups) identified. Legionella does not spread from person-to-person. Most individuals who are exposed to the bacteria do not get sick. Most outbreaks result from poorly maintained cooling towers.

The cell wall of the Legionella bacteria has parts that determine its specific type. The structural arrangement and building blocks (sugars) in the cell wall help classify the bacteria.

↑ Return to Menu