Substrate (biology) in the context of "Crustose"

Play Trivia Questions online!

or

Skip to study material about Substrate (biology) in the context of "Crustose"

Ad spacer

⭐ Core Definition: Substrate (biology)

In biology, a substrate is the surface on which an organism (such as a plant, fungus, or animal) lives. A substrate can include biotic or abiotic materials and animals. For example, encrusting algae that lives on a rock (its substrate) can be itself a substrate for an animal that lives on top of the algae. Inert substrates are used as growing support materials in the hydroponic cultivation of plants. In biology substrates are often activated by the nanoscopic process of substrate presentation.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Substrate (biology) in the context of Crustose

Crustose is a habit of some types of algae and lichens in which the organism grows tightly appressed to a substrate, forming a biological layer. Crustose adheres very closely to the substrates at all points. Crustose is found on rocks and tree bark. Some species of marine algae of the Rhodophyta, in particular members of the order Corallinales, family Corallinaceae, subfamily Melobesioideae with cell walls containing calcium carbonate grow to great depths in the intertidal zone, forming crusts on various substrates. The substrate can be rocks throughout the intertidal zone, or, as in the case of the Corallinales, reef-building corals, and other living organisms including plants, such as mangroves and animals such as shelled molluscs. The coralline red algae are major members of coral reef communities, cementing the corals together with their crusts. Among the brown algae, the order Ralfsiales comprises two families of crustose algae.

↓ Explore More Topics
In this Dossier

Substrate (biology) in the context of Microbial mat

A microbial mat is a multi-layered sheet or biofilm of microbial colonies, composed of mainly bacteria and/or archaea. Microbial mats grow at interfaces between different types of material, mostly on submerged or moist surfaces, but a few survive in deserts. A few are found as endosymbionts of animals.

Although only a few centimetres thick at most, microbial mats create a wide range of internal chemical environments, and hence generally consist of layers of microorganisms that can feed on or at least tolerate the dominant chemicals at their level and which are usually of closely related species. In moist conditions mats are usually held together by slimy substances secreted by the microorganisms. In many cases some of the bacteria form tangled webs of filaments which make the mat tougher. The best known physical forms are flat mats and stubby pillars called stromatolites, but there are also spherical forms.

↑ Return to Menu

Substrate (biology) in the context of Sessility (motility)

Sessility, a property of certain animals, is a lack of self-locomotion. Sessile animals do not have natural motility, and are immobile unless there are external forces (such as water currents). Usually, sessile animals are permanently attached to a solid object, such as a rock, a dead tree trunk, or a human-made object such as a buoy or ship's hull. Organisms such as corals lay down their own substrate from which they grow.

Biological sessility differs from the botanical concept of sessility, which refers to an organism or biological structure attached directly by its base without a stalk.

↑ Return to Menu

Substrate (biology) in the context of Lichen

A lichen (/ˈlkən/ LIE-kən, UK also /ˈlɪən/ LI-chən) is a hybrid colony of algae or cyanobacteria living symbiotically among filaments of multiple fungus species, along with bacteria embedded in the cortex or "skin", in a mutualistic relationship. Lichens are the lifeform that first brought the term symbiosis (as Symbiotismus) into biological context.

Lichens have since been recognized as important actors in nutrient cycling and producers which many higher trophic feeders feed on, such as reindeer, gastropods, nematodes, mites, and springtails. Lichens have properties different from those of their component organisms. They come in many colors, sizes, and forms and are sometimes plant-like, but are not plants. They may have tiny, leafless branches (fruticose) or flat, leaf-like structures (foliose); they may grow crust-like, adhering tightly to a surface (substrate) like a thick coat of paint (crustose), have a powder-like appearance (leprose), or feature other growth forms.

↑ Return to Menu

Substrate (biology) in the context of Mycelium

Mycelium (pl.: mycelia) is a root-like structure of a fungus consisting of a mass of branching, thread-like hyphae. Its normal form is that of branched, slender, entangled, anastomosing, hyaline threads. Fungal colonies composed of mycelium are found in and on soil and many other substrates. A typical single spore germinates into a monokaryotic mycelium, which cannot reproduce sexually; when two compatible monokaryotic mycelia join and form a dikaryotic mycelium, that mycelium may form fruiting bodies such as mushrooms. A mycelium may be minute, forming a colony that is too small to see, or may grow to span thousands of acres as in Armillaria.

Through the mycelium, a fungus absorbs nutrients from its environment. It does this in a two-stage process. First, the hyphae secrete enzymes onto or into the food source, which break down biological polymers into smaller units such as monomers. These monomers are then absorbed into the mycelium by facilitated diffusion and active transport.

↑ Return to Menu

Substrate (biology) in the context of Scallop

Scallop (/ˈskɒləp, ˈskæl-/) is a common name that encompasses various species of marine bivalve molluscs in the taxonomic family Pectinidae, the scallops. However, this common name is also sometimes applied to species in other closely related families within the superfamily Pectinoidea, which also includes the thorny oysters.

Scallops are a cosmopolitan family of bivalves found in all of the world's oceans, although never in fresh water. They are one of the very few groups of bivalves to be primarily "free-living", with many species capable of rapidly swimming short distances and even migrating some distance across the ocean floor. A small minority of scallop species live cemented to rocky substrates as adults, while others attach themselves to stationary or rooted objects such as seagrass at some point in their lives by means of a filament they secrete called a byssal thread.

↑ Return to Menu

Substrate (biology) in the context of Flatfish

Flatfish are a group of ray-finned fish belonging to the suborder Pleuronectoidei and historically the order Pleuronectiformes (though this is now disputed). Their collective common name is due to their habit of lying on one side of their laterally-compressed body (flattened side-to-side) upon the seafloor; in this position, both eyes lie on the side of the head facing upwards, while the other side of the head and body (the "blind side") lies on the substrate. This loss of symmetry, a unique adaptation in vertebrates, stems from one eye "migrating" towards the other during the juvenile's metamorphosis; due to variation, some species tend to face their left side upward, some their right side, and others face either side upward. Pleuronectidae lie on their left side, with eyes on the right. Paralichthyidae lie on their right side, with eyes on the left.

They are one of the most speciose groups of demersal fish. Their cryptic coloration and habits, a form of camouflage, conceals them from potential predators.

↑ Return to Menu

Substrate (biology) in the context of Polyp (zoology)

A polyp in zoology is one of two forms found in the phylum Cnidaria, the other being the medusa. Polyps are roughly cylindrical in shape and elongated at the axis of the vase-shaped body. In solitary polyps, the aboral (opposite to oral) end is attached to the substrate by means of a disc-like holdfast called a pedal disc, while in colonies of polyps it is connected to other polyps, either directly or indirectly. The oral end contains the mouth, and is surrounded by a circlet of tentacles.

↑ Return to Menu