Subring in the context of "Valuation ring"

Play Trivia Questions online!

or

Skip to study material about Subring in the context of "Valuation ring"

Ad spacer

⭐ Core Definition: Subring

In mathematics, a subring of a ring R is a subset of R that is itself a ring when binary operations of addition and multiplication on R are restricted to the subset, and that shares the same multiplicative identity as R.
Cite error: There are <ref group=lower-alpha> tags or {{efn}} templates on this page, but the references will not show without a {{reflist|group=lower-alpha}} template or {{notelist}} template (see the help page).

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Subring in the context of Valuation ring

In abstract algebra, a valuation ring is an integral domain D such that for every non-zero element x of its field of fractions F, at least one of x or x belongs to D.

Given a field F, if D is a subring of F such that either x or x belongs toD for every nonzero x in F, then D is said to be a valuation ring for the field F or a place of F. Since F in this case is indeed the field of fractions of D, a valuation ring for a field is a valuation ring. Another way to characterize the valuation rings of a field F is that valuation rings D of F have F as their field of fractions, and their ideals are totally ordered by inclusion; or equivalently their principal ideals are totally ordered by inclusion. In particular, every valuation ring is a local ring.

↓ Explore More Topics
In this Dossier

Subring in the context of Algebraic integer

In algebraic number theory, an algebraic integer is a complex number that is integral over the integers. That is, an algebraic integer is a complex root of some monic polynomial (a polynomial whose leading coefficient is 1) whose coefficients are integers. The set of all algebraic integers A is closed under addition, subtraction and multiplication and therefore is a commutative subring of the complex numbers.

The ring of integers of a number field K, denoted by OK, is the intersection of K and A: it can also be characterized as the maximal order of the field K. Each algebraic integer belongs to the ring of integers of some number field. A number α is an algebraic integer if and only if the ring is finitely generated as an abelian group, which is to say, as a -module.

↑ Return to Menu

Subring in the context of Integral element

In commutative algebra, an element b of a commutative ring B is said to be integral over a subring A of B if b is a root of some monic polynomial over A.

If A, B are fields, then the notions of "integral over" and of an "integral extension" are precisely "algebraic over" and "algebraic extensions" in field theory (since the root of any polynomial is the root of a monic polynomial).

↑ Return to Menu

Subring in the context of Ring of integers

In mathematics, the ring of integers of an algebraic number field is the ring of all algebraic integers contained in . An algebraic integer is a root of a monic polynomial with integer coefficients: . This ring is often denoted by or . Since any integer belongs to and is an integral element of , the ring is always a subring of .

The ring of integers is the simplest possible ring of integers. Namely, where is the field of rational numbers. And indeed, in algebraic number theory the elements of are often called the "rational integers" because of this.

↑ Return to Menu