Field theory (mathematics) in the context of "Integral element"

Play Trivia Questions online!

or

Skip to study material about Field theory (mathematics) in the context of "Integral element"

Ad spacer

⭐ Core Definition: Field theory (mathematics)

In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics.

The best known fields are the field of rational numbers, the field of real numbers, and the field of complex numbers. Many other fields, such as fields of rational functions, algebraic function fields, algebraic number fields, and p-adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many elements.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

πŸ‘‰ Field theory (mathematics) in the context of Integral element

In commutative algebra, an element b of a commutative ring B is said to be integral over a subring A of B if b is a root of some monic polynomial over A.

If A, B are fields, then the notions of "integral over" and of an "integral extension" are precisely "algebraic over" and "algebraic extensions" in field theory (since the root of any polynomial is the root of a monic polynomial).

↓ Explore More Topics
In this Dossier

Field theory (mathematics) in the context of Degree of a field extension

In mathematics, more specifically field theory, the degree of a field extension is a rough measure of the "size" of the field extension. The concept plays an important role in many parts of mathematics, including algebra and number theoryβ€”indeed in any area where fields appear prominently.

↑ Return to Menu