Subglacial lake in the context of "Lake Vostok"

Play Trivia Questions online!

or

Skip to study material about Subglacial lake in the context of "Lake Vostok"

Ad spacer

⭐ Core Definition: Subglacial lake

A subglacial lake is a lake that is found under a glacier, typically beneath an ice cap or ice sheet. Subglacial lakes form at the boundary between ice and the underlying bedrock, where liquid water can exist above the lower melting point of ice under high pressure. Over time, the overlying ice gradually melts at a rate of a few millimeters per year. Meltwater flows from regions of high to low hydraulic pressure under the ice and pools, creating a body of liquid water that can be isolated from the external environment for millions of years.

Since the first discoveries of subglacial lakes under the Antarctic Ice Sheet, more than 400 subglacial lakes have been discovered in Antarctica, beneath the Greenland Ice Sheet, and under Iceland's Vatnajökull ice cap. Subglacial lakes contain a substantial proportion of Earth's liquid freshwater, with the volume of Antarctic subglacial lakes alone estimated to be about 10,000 km, or about 15% of all liquid freshwater on Earth.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Subglacial lake in the context of Lake Vostok

Lake Vostok (Russian: озеро Восток, romanizedozero Vostok) is the largest of Antarctica's 675 known subglacial lakes and the 16th largest lake in the world by area. Lake Vostok is located at the southern Pole of Cold, beneath Russia's Vostok Station, under the surface of the central East Antarctic Ice Sheet, which is at 3,488 m (11,444 ft) above mean sea level. The surface of this fresh water lake is approximately 4,000 m (13,100 ft) under the surface of the ice, which places it at approximately 500 m (1,600 ft) below sea level.

The lake is named after the Vostok Station, which derives its name from Vostok (Восток), the name of a sloop-of-war, which means "East" in Russian (the lake is also located in East Antarctica). The existence of a subglacial lake was first suggested by Russian geographer Andrey Kapitsa based on seismic soundings made during the Soviet Antarctic Expeditions in 1959 and 1964 to measure the thickness of the ice sheet. Continued research by Russian and British scientists led to the final confirmation of the existence of the lake in 1993 by J. P. Ridley using ERS-1 laser altimetry.

↓ Explore More Topics
In this Dossier

Subglacial lake in the context of Fossil water

Fossil water, fossil groundwater, or paleowater is an ancient body of water that has been contained in some undisturbed space, typically groundwater in an aquifer, for millennia. Other types of fossil water can include subglacial lakes, such as Antarctica's Lake Vostok. UNESCO defines fossil groundwater as "water that infiltrated usually millennia ago and often under climatic conditions different from the present, and that has been stored underground since that time."

Determining the time since water infiltrated usually involves analyzing isotopic signatures. Determining "fossil" status—whether or not that particular water has occupied that particular space since the distant past—involves modeling the flow, recharge, and losses of aquifers, which can involve significant uncertainty. Some aquifers are hundreds of meters deep and underlie vast areas of land. Research techniques in the field are developing quickly and the scientific knowledge base is growing. In the cases of many aquifers, research is lacking or disputed as to the age of the water and the behavior of the water inside the aquifer.

↑ Return to Menu

Subglacial lake in the context of Meltwater

Meltwater (or melt water) is water released by the melting of snow or ice, including glacial ice, tabular icebergs and ice shelves over oceans. Meltwater is often found during early spring when snow packs and frozen rivers melt with rising temperatures, and in the ablation zone of glaciers where the rate of snow cover is reducing. Meltwater can be produced during volcanic eruptions, in a similar way in which the more dangerous lahars form. It can also be produced by the heat generated by the flow itself.

When meltwater pools on the surface rather than flowing, it forms melt ponds. As the weather gets colder, meltwater will often re-freeze. Meltwater can also collect or melt under the ice's surface. These pools of water, known as subglacial lakes, can form due to geothermal heat and friction. Melt ponds may also form above and below Arctic sea ice, decreasing its albedo and causing the formation of thin underwater ice layers or false bottoms.

↑ Return to Menu

Subglacial lake in the context of Ablation zone

Ablation zone or ablation area refers to the low-altitude area of a glacier or ice sheet below firn with a net loss in ice mass. This loss can result from melting, sublimation, evaporation, ice calving, aeolian processes like blowing snow, avalanche, and any other ablation. The equilibrium line altitude (ELA) or snow line separates the ablation zone from the higher-altitude accumulation zone. The ablation zone often contains meltwater features such as supraglacial lakes, englacial streams, and subglacial lakes. Sediments dropped in the ablation zone forming small mounds or hillocks are called kames. Kame and kettle hole topography is useful in identifying an ablation zone of a glacier. The seasonally melting glacier deposits much sediment at its fringes in the ablation area. Ablation constitutes a key part of the glacier mass balance.

The amount of snow and ice gained in the accumulation zone and the amount of snow and ice lost in the ablation zone determine glacier mass balance. Often mass balance measurements are made in the ablation zone using snow stakes.

↑ Return to Menu

Subglacial lake in the context of Jökulhlaup

A jökulhlaup (Icelandic pronunciation: [ˈjœːkʏl̥ˌl̥œyp] pronunciation) (literally "glacial run") is a type of glacial outburst flood. It is an Icelandic term that has been adopted in glaciological terminology in many languages. It originally referred to the well-known subglacial outburst floods from Vatnajökull, Iceland, which are triggered by geothermal heating and occasionally by a volcanic subglacial eruption, but it is now used to describe any large and abrupt release of water from a subglacial or proglacial lake/reservoir.

Since jökulhlaups emerge from hydrostatically sealed lakes with floating levels far above the threshold, their peak discharge can be much larger than that of a marginal or extra-marginal lake burst. The hydrograph of a jökulhlaup from Vatnajökull typically either climbs over a period of weeks with the largest flow near the end, or it climbs much faster during the course of some hours. These patterns are suggested to reflect channel melting, and sheet flow under the front, respectively. Similar processes on a very large scale occurred during the deglaciation of North America and Europe after the last ice age (e.g., Lake Agassiz and the English Channel), and presumably at earlier times, although the geological record is not well preserved.

↑ Return to Menu